ON-SITE SOIL INVESTIGATION REPORT

PROJECT NAME & SITE LOCATION:
Project Site
101 Granby Street
Bloomfield, Connecticut

JMM Job No.: 20-2723-BLO-3
Field Investigation Date(s): 12/11/2020 & 5/31/2022
Field Investigation Method(s):
☑ Spade and Auger
☐ Backhoe Test Pits
☐ Other:

REPORT PREPARED FOR:
Mr. Allan Borghesi
Borghesi Building & Engineering Co., Inc.
2155 East Main Street
Torrington, CT 06790

Field Conditions:
Weather: Sunny, 40’s/90’s
Soil Moisture: Moist
Snow Depth: N/A
Frost Depth: N/A

Purpose of Investigation:
☑ Wetland Delineation/Flagging in Field
☐ Wetland Mapping on Sketch Plan or Topographic Plan
☐ High Intensity Soil Mapping by Soil Scientist
☐ Medium Intensity Soil Mapping from USDA-NRCS Web Soil Survey Maps
☐ Other:

Base Map Source: USDA-NRCS Web Soil Survey (attached)

Wetland Boundary Marker Series: JMM-1 to JMM-20 and JMM-X-1 to JMM-X-7

General Site Description/Comments: The site is located west of Granby Street, south of Tobey Road, and north of the Bloomfield/Harford Town line, in Bloomfield, CT. This +/- 7.7-acre site is comprised of a very disturbed vacant industrial site with areas of broken asphalt and concrete, very dense shrubbery areas, a forested upland areas along the northwestern portion, and a forested/shrubby regulated wetland areas (see Figure 1, attached). The soil types were found to be disturbed throughout with the exception of a small area of relatively undisturbed soils in the northwestern part of the site. The undisturbed soils are derived from glaciolacustrine (i.e., stratified sand, silt, and clay) deposits. The undisturbed upland soils are comprised of the moderately well drained Brancroft (25) soil series. The disturbed upland and wetland soils were mapped as the Udorthents-Urban Land (306) and Aquents (308w) mapping units. The undisturbed wetland soils were identified as the poorly to very poorly drained Sciticco, Shaker, and Maybid (9) soil series complex. The regulated areas associated with the site consist of a highly disturbed wooded/scrub-shrub swamp located along the north/northwestern portions of the site near Tobey Road (JMM-# series) and a wooded swamp along the southwest corner of the site adjacent to the property line (JMM-X-series). It is worth noting that during the May 2022 site visit the very dense shrubby areas observed in the December 2020 site visit were cleared, which made the review of the entire parcel possible. Typical vegetation observed within the regulated areas included such species as pin oak, swamp white oak, red maple, American elm, multiflora rose, honeysuckle, common reed, sedges, and purple loosestrife, to name a few.
SOIL MAP UNITS

Wetland Soils

Scitico silt loam (9): This soil was formerly mapped in Connecticut as Scantic. The Scitico series consists of deep, poorly drained soils formed in silty and clayey glacial lacustrine sediments. They are in nearly level to gently sloping lowlands on glacial lacustrine or marine sediment terraces. Typically, these soils have a very dark grayish brown silt loam surface layer 6 inches thick. The subsoil from 6 to 24 inches is dark gray, mottled silty clay loam. The substratum from 24 to 60 inches is dark grayish brown, mottled, silty clay. Varved layers of silts and clays in the substratum often extend to very deep depths.

Shaker fine sandy loam (9). The Shaker series consists of deep, poorly drained soils formed in a coarse-loamy mantle over clayey lacustrine sediments. They are nearly level to moderately steeply sloping soils on glacial lacustrine terraces. Typically, these soils have a very dark grayish brown fine sandy loam surface layer 6 inches thick. The subsoil from 6 to 25 inches is light brownish gray, mottled sandy loam. The substratum from 25 to 60 inches is dark yellowish brown, mottled, silty clay. This soil was formerly mapped in Connecticut as Swanton.

Maybrid silt loam (9). The Maybrid series consists of deep, very poorly drained soils formed in silty and clayey glacial lacustrine sediments. They are in level to depressional areas on old glacial lakebeds or marine sediment terraces. Typically, these soils have a very dark gray silt loam surface layer 6 inches thick. The subsoil from 6 to 20 inches is gray, mottled silty clay loam. The substratum from 20 to 60 inches is gray, mottled, silty clay. Varved layers of silts and clays in the substratum often extend to very deep depths. This soil was formerly mapped in Connecticut as Biddeford.

Aquets (308w). This soil map unit consists of poorly drained and very poorly drained disturbed land areas. They are most often found on landforms, which have been subject to prior filling and/or excavation activities. In general, this soil map unit occurs where two or more feet of the original soil surface has been filled over, graded or excavated. The Aquets are characterized by a seasonal to prolonged high ground water table and either support or are capable of supporting wetland vegetation. Aquets are recently formed soils, which have an aquatic moisture regime. An aquatic moisture regime is associated with a reducing soil environment that is virtually free of dissolved oxygen because the soil is saturated by groundwater or by water of the capillary fringe. The key feature is the presence of a ground water table at or very near to the soil surface for a period of fourteen days or longer during the growing season.

Upland Soils

Brancroft silt loam (25). This series consists of very deep, moderately well drained and somewhat poorly drained soils formed in silty and clayey glacial lacustrine sediments. They are nearly level to moderately steep soils on slightly elevated positions of glacial lacustrine terraces. Typically, these soils have a dark grayish brown silt loam surface layer 6 inches thick. The subsoil from 6 to 30 inches is brown, mottled silt loam. The substratum from 30 to 60 inches is olive, mottled, silty clay. Varved layers of silts and clays often extend to very deep depths. This soil was formerly mapped in Connecticut as Buxton.
ON-SITE SOIL INVESTIGATION REPORT (CONTINUED)

PROJECT NAME & SITE LOCATION: Project Site
101 Granby Street, Bloomfield, CT

SOIL MAP UNITS

Udorthents-Urban Land (306). This soil mapping unit consists of well drained to moderately well drained soils that have been altered by cutting, filling, or grading. The areas either have had two feet or more of the upper part of the original soil removed or have more than two feet of fill material on top of the original soil. Udorthents-Urban Land or Made Land soils can be found on any soil parent material but are typically fluvial on glacial till plains and outwash plains and stream terraces.

Any accompanying soil logs and soil maps, and the on-site soil investigation narrative are in accordance with the taxonomic classification of the National Cooperative Soil Survey of the USDA Natural Resource Conservation Service, and with the Connecticut Soil Legend (DEP Bulletin No.5, 1983). Jurisdictional wetland boundaries were delineated pursuant to the Connecticut General Statutes (CGS Sections 22a-36 to 22a-45), as amended. The site investigation was conducted and/or reviewed by the undersigned Registered Soil Scientist(s) [registered with the Society of Soil Scientists of Southern New England (SSSSNE) in accordance with the standards of the Federal Office of Personnel Management].

All wetland boundary lines established by the undersigned Soil Scientist are subject to change until officially adopted by, local, state, and federal regulatory agencies.

Respectfully submitted,

JMM WETLAND CONSULTING SERVICES, LLC

[Signature]

James M. McManus, MS, CPSS
Certified Professional Soil Scientist
Field Investigator/Reviewer
MAP DISCLAIMER - NOTICE OF LIABILITY
This map is for assessment purposes only. It is not for legal description or conveyances. All information is subject to verification by any user. The Town of Bloomfield and its mapping contractors assume no legal responsibility for the information contained herein.

Approximate Scale: 1 inch = 150 feet

0 150 Feet
Soil Map—State of Connecticut
(101 Granby Street, Bloomfield, CT)

MAP LEGEND

Area of Interest (AOI)
☐ Area of Interest (AOI)

Soils
☐ Soil Map Unit Polygons
☐ Soil Map Unit Lines
☐ Soil Map Unit Points

Special Point Features
☒ Blowout
☒ Borrow Pit
☒ Clay Spot
☒ Closed Depression
☒ Gravel Pit
☒ Gravelly Spot
☒ Landfill
☒ Lava Flow
☒ Marsh or swamp
☒ Mine or Quarry
☒ Miscellaneous Water
☒ Perennial Water
☒ Rock Outcrop
☒ Saline Spot
☒ Sandy Spot
☒ Severely Eroded Spot
☒ Sinkhole
☒ Slides or Slip
☒ Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:12,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service
Web Soil Survey URL: Web Mercator (EPSG:3857)
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: State of Connecticut
Survey Area Data: Version 20, Jun 8, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Jul 15, 2019—Aug 29, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Map Unit Legend

<table>
<thead>
<tr>
<th>Map Unit Symbol</th>
<th>Map Unit Name</th>
<th>Acres in AOI</th>
<th>Percent of AOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Scitico, Shaker, and Maybid soils</td>
<td>50.5</td>
<td>28.2%</td>
</tr>
<tr>
<td>25A</td>
<td>Brancroft silt loam, 0 to 3 percent slopes</td>
<td>10.1</td>
<td>5.7%</td>
</tr>
<tr>
<td>25B</td>
<td>Brancroft silt loam, 3 to 8 percent slopes</td>
<td>19.4</td>
<td>10.8%</td>
</tr>
<tr>
<td>26A</td>
<td>Berlin silt loam, 0 to 3 percent slopes</td>
<td>0.4</td>
<td>0.2%</td>
</tr>
<tr>
<td>28B</td>
<td>Elmridge fine sandy loam, 3 to 8 percent slopes</td>
<td>0.9</td>
<td>0.5%</td>
</tr>
<tr>
<td>82B</td>
<td>Broadbrook silt loam, 3 to 8 percent slopes</td>
<td>3.7</td>
<td>2.1%</td>
</tr>
<tr>
<td>225B</td>
<td>Brancroft-Urban land complex, 0 to 8 percent slopes</td>
<td>9.3</td>
<td>5.2%</td>
</tr>
<tr>
<td>240B</td>
<td>Ludlow-Urban land complex, 0 to 8 percent slopes</td>
<td>0.7</td>
<td>0.4%</td>
</tr>
<tr>
<td>302</td>
<td>Dumps</td>
<td>3.9</td>
<td>2.2%</td>
</tr>
<tr>
<td>306</td>
<td>Udorthents-Urban land complex</td>
<td>71.2</td>
<td>39.8%</td>
</tr>
<tr>
<td>308</td>
<td>Udorthents, smoothed</td>
<td>9.0</td>
<td>5.1%</td>
</tr>
<tr>
<td>Totals for Area of Interest</td>
<td></td>
<td>179.1</td>
<td>100.0%</td>
</tr>
</tbody>
</table>