

APPENDIX

PHASE I ENVIRONMENTAL SITE ASSESSMENT

**PROSSER LIBRARY
1 TUNXIS AVENUE
BLOOMFIELD, CONNECTICUT**

**Prepared for:
Town of Bloomfield**

SLR Proj. No.: 144.12571.00015

April 2022

SLR

SIGNATURE PAGE

This document has been prepared by SLR International Corporation. The material and data in this report were prepared by Jackson Schille, under the supervision and direction of Peter Shea, LEP.

DEFINITION

I declare that, to the best of my professional knowledge and belief, I meet the definition of Environmental Professional, as defined in §312.10 of 40 CFR 312; and

QUALIFICATIONS

I have the specific qualifications based on education, training, and experience to assess a property of the nature, history, and setting of the Subject Property. I have developed and performed all appropriate inquiry in conformance with the standards and practices set forth in 40 CFR Part 312.

Prepared by:

for

Jackson Schille
Environmental Consultant

Reviewed by:

Peter Shea, LEP
Principal Environmental
Scientist

CONTENTS

EXECUTIVE SUMMARY	1
1. INTRODUCTION	4
1.1 Project Information.....	4
1.2 Objectives.....	4
1.3 Purpose	6
1.4 Scope of Work, Significant Assumptions, Terms and Conditions	6
1.5 User/Reliance.....	6
1.6 User-Provided Information	6
1.7 User-Provided Documents.....	7
2. SUBJECT PROPERTY AND SURROUNDING AREA OBSERVATIONS.....	8
2.1 Methodology.....	8
2.2 Restrictions.....	8
2.3 Subject Site.....	8
2.3.1 Subject Property Description and Layout.....	8
2.3.2 Interior Observations.....	9
2.3.3 Exterior Observations	9
2.3.4 Subject Property Operations	10
2.3.5 Material Handling and Storage	10
2.3.6 Waste Generation.....	11
2.3.7 Water Supply	11
2.3.8 Wastewater.....	11
2.3.9 Storm water	11
2.3.10 Connecticut Transfer Act	11
2.4 Adjoining Properties.....	12
2.4.1 Area Description	12
2.4.2 Discharges, Migration, or RunOff of Potential Contaminants from Surrounding Properties	12
3. RECORDS REVIEW	13
3.1 Federal/State Environmental Records	13
3.1.1 Listings for Subject Property	13
3.1.2 NOTABLE Listings for Nearby Sites	13
3.2 Local/Regional Environmental RECORDS.....	15
3.3 Historical Records.....	15
3.3.1 Subject Property Historical Use Summary.....	15
3.3.2 Historical Source Summary.....	15
3.4 Prior Reports	17
3.5 Physical Setting	17
4. INTERVIEWS	18

CONTENTS (CONTINUED)

4.1	Findings from Interview with Owner's Representative	18
4.2	Required Questions.....	18
4.3	Findings from Interview with Major Occupants	18
4.4	Summary of Findings from Owner-Provided Information	18
5.	SIGNIFICANT DATA GAPS.....	19
6.	CONCLUSIONS	20

APPENDICES

Appendix A	Figures
Appendix B	Subject Property Photographs
Appendix C	Third-Party Vendor Database Report
Appendix D	Historical Sources
Appendix E	Supporting Documents
Appendix F	Limitations
Appendix G	Qualifications of Environmental Professionals

EXECUTIVE SUMMARY

SLR International Corporation (SLR) performed a Phase I Environmental Site Assessment (ESA) on 1 Tunxis Avenue, Bloomfield, Connecticut, (the "Site" or "Subject Property"). The Phase I ESA was performed in conformance with the scope and limitations of American Society for Testing and Materials (ASTM) Practice E1527-13 and in general accordance with the relevant sections of Connecticut Department of Energy & Environmental Protection (CTDEEP) *Site Characterization Guidance Document* (SCGD) (dated September 2007 and revised December 2010) with respect to the identification of areas of concern (AOCs) at the Site.

SUBJECT PROPERTY DESCRIPTION

The Subject Property comprises two contiguous parcels totaling 1.06 acres in the central portion of Bloomfield, Connecticut. The Subject Property is zoned as Bloomfield Central District (BCD) and is currently owned by the Town of Bloomfield.

The Subject Property is divided into two separate parcels of land. Parcel 31-372 contains a three-story 24,399-square-foot library on the eastern side of the lot and a paved parking lot to the west. Parcel 31-371 on the north side of the Subject Property consists of a partially paved and gravel parking lot for the library. Wash Brook is located on the western portion of the Subject Property.

The Subject Property is bound to the north by a commercial building; to the west by Wash Brook and a municipal building; to the east by Tunxis Avenue, beyond which lies a park; and to the south by Mountain Avenue, beyond which lies condominiums. Access to the Subject Property is provided via driveways from adjacent roadways.

HISTORICAL USES

The southern and northern portions of the Subject Property have been developed with a municipal building and a masonic temple, respectively, dating back to 1932. Originally, the southern building was a town hall which was later demolished and redeveloped into the library from 1963 to 1965. The existing temple appears to have been demolished sometime between 2008 and 2010 and was redeveloped as a paved parking area for the current library building.

CONCLUSIONS

SLR performed a Phase I ESA of the Subject Property. The Phase I ESA was performed in conformance with the scope and limitations of ASTM Practice E1527-13 and in general accordance with CTDEEP's SCGD. Exceptions to or deletions from this practice are described in Appendix F of this report.

Recognized Environmental Conditions (RECs)

The following REC was identified in connection with the Subject Property:

- **PAH Impacts In On-Site Soil:** One 5,000-gallon heating oil underground storage tank (UST) was formerly present at the Subject Property. The UST was installed outside of the northeast corner of the building in 1962 and closed-in-place in 1986.

The UST was removed from the Subject Property in November 2014. Subsequent to removal, a total of five post-excavation soil samples were collected, including four sidewall samples and one bottom sample. The samples were analyzed for volatile organic compounds (VOCs), extractable total petroleum hydrocarbons (ETPH), and polycyclic aromatic hydrocarbons (PAHs). Laboratory analytical results of the side wall soil samples did not detect constituents exceeding laboratory detection limits. No analytes were detected from the sidewall samples in exceedance of their respective CTDEEP Remediation Standard Regulation (RSR) criteria. The bottom soil sample did not detect VOCs or ETPH constituents exceeding laboratory detection limits; however, PAH constituents were detected in excess of CTDEEP RSR criteria. The elevated PAH detections to historic backfill material in the area.

Additionally, the Subject Property is listed as a Leaking Underground Storage Tank (LUST) facility associated with a 2013 release (Case No. 201303390). Although the CTDEEP *List of Contaminated or Potentially Contaminated Sites (December 2021)* lists the status of the case as “completed”, SLR was not provided confirmation that the case has been issued formal closure by the CTDEEP. Based on the elevated presence of PAH in on-site soils, this constitutes a REC.

Historical RECs (HRECs)

SLR did not identify evidence of HRECs in association with the Subject Property.

Controlled RECs (CRECs)

SLR did not identify evidence of CRECs in association with the Subject Property.

Area of Concern (AOCs)

The following AOC was identified in conjunction with the Site property:

- **Demolition Debris/Impacted Fill:** The former structure (temple) at the Site was demolished between 2008 and 2010. No information was identified regarding the removal of the debris, or quality of the building materials used in construction of the former Site structures. Based on the age of the former building, there is a potential for hazardous building materials (lead-based paint, PCB-containing caulk/window glazing, etc.) to have been present. The demolition materials (if present) and demolition activities could have resulted in impacts to surrounding soils.

SLR notes that the definition of an AOC is different from the definition of a REC in the ASTM standard, and therefore, not all AOCs are considered RECs. The presence of the demolition debris or fill is not defined as a potential release but may result in impacted soil at the Site.

Significant Data Gaps

No significant data gaps were identified.

1. INTRODUCTION

1.1 PROJECT INFORMATION

Client Information:		Consultant Information:	
Town of Bloomfield 800 Bloomfield Avenue Bloomfield, Connecticut 06002		SLR International Corporation 45 Glastonbury Boulevard Glastonbury, Connecticut 06033	
Client Contact:		Project Manager:	
Name:	Nancy Haynes	Name:	Peter Shea
Phone:	(860) 769-3534	Phone:	860-400-5711
Email:	nhaynes@bloomfieldct.org	Email:	pshea@slrconsulting.com
Inspection Details:			
Subject Property:	Prosser Library 1 Tunxis Avenue Bloomfield, Connecticut 06002	Site Visit Date:	March 17, 2022
		Interview Dates:	March 17, 2022
		Records Date:	March 2022
County:	Hartford	Assessor:	Jackson Schille
Lat/Long:	41.8313090, -72.7381320	Environmental Professional:	Peter Shea

1.2 OBJECTIVES

The objective of this Phase I ESA is to identify, to the extent feasible pursuant to the processes outlined in the scope of work, *recognized environmental conditions* (RECs), *historical recognized environmental conditions* (HRECs), or *controlled recognized environmental conditions* (CRECs) as defined by the ASTM Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process and ASTM Designation E1527-13 (ASTM E1527-13) as well as Areas of Concern (AOCs) as defined by CTDEEP's SCGD for the Site. Note that the SCGD is directly applicable to properties subject to the Connecticut Transfer Act, C.G.S. §§ 22a-134 *et seq.*, as amended (the "CTA") but in this instance only provides the basis for the evaluation of the Site relative to the definition of an Establishment under the CTA.

The ASTM Practice defines a REC as:

"...the presence or likely presence of any hazardous substances or petroleum products in, on, or at a property: (1) due to any release to the environment; (2) under conditions indicative of a release to the environment; or (3) under conditions that pose a material threat of a future release to the environment. The term includes hazardous substances or petroleum products even under conditions in compliance with laws. The term is not intended to include *de minimis conditions* that generally do not present a

material risk of harm to public health or the environment and that generally would not be the subject of an enforcement action if brought to the attention of appropriate government agencies..."

The ASTM Practice defines a HREC as:

"...an environmental condition, which in the past would have been considered a REC, but which may or may not be considered a REC currently. The final decision rests with the *environmental professional* and will be influenced by the current impact of the HREC on the Subject Property. If a past release of any hazardous substances or petroleum products has occurred in connection with the property and has been remediated, with such remediation accepted by the responsible regulatory agency, this condition shall be considered an HREC..."

The ASTM Practice defines a CREC as:

"...a recognized environmental condition resulting from a past release of hazardous substances or petroleum products that has been addressed to the satisfaction of the applicable regulatory authority, with hazardous substances or petroleum products allowed to remain in place subject to the implementation of required controls (for example, property use restrictions, activity and use limitations, institutional controls, or engineering controls...)."

The CTDEEP SCGD defines an AOC as:

"...locations or areas at a site where hazardous waste and/or hazardous substances (including, but not limited to, petroleum products) have been or may have been used, stored, treated, handled, disposed, spilled, and/or released to the environment..." The CTDEEP does not differentiate or categorize potential minor AOCs as "*de minimis*" in contrast to their treatment under the ASTM standard. Additionally, SLR assessed available technical information concerning past operations at the Site relative to the definition of an "Establishment" as outlined below.

Evaluation of the Site under the CTA:

SLR has also conducted a technical "Establishment" evaluation to assess the potential applicability of the CTA to a future transfer of the Site. In particular, SLR evaluated whether activities have occurred at the Site that could qualify it as an "Establishment," as defined by the CTA.

The CTA defines an "Establishment," in relevant part, as any real property or business operation from which, on or after November 19, 1980, there was generated more than 100 kilograms of hazardous waste in any 1 month. However, the 100-kilogram hazardous waste threshold does not include materials related to (1) the remediation of polluted soil, groundwater, or sediment; (2) the removal or abatement of building materials or removal of materials used for maintaining or operating a building; (3) the removal of unused chemicals or materials as a result of emptying or clearing out a building; or (4) the removal of unused chemicals or materials as a result of the complete cessation of a business operation, provided the waste is removed within the 90-day period following the cessation of the business operations. An "Establishment" also includes any property or business where hazardous waste generated at a different location was recycled, reclaimed, reused,

stored, handled, treated, transported, or disposed of. Further, any real properties upon which the following business operations were performed on or after May 1, 1967, are also considered establishments: dry cleaning; furniture stripping; or vehicle body repair, regardless of the amount of hazardous waste that may have been generated on Site.

1.3 PURPOSE

Typically, a Phase I ESA is intended to permit the User(s) to satisfy one of the requirements to qualify for the innocent landowner, contiguous property owner, or bona fide prospective purchaser defense under Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) liability. This assessment constitutes all appropriate inquiries into the previous ownership and uses of the Site consistent with good commercial or customary practice, as defined in 42 U.S.C. §9601(35)(B) of CERCLA. If RECs are identified during this assessment, there may be continuing obligations on the part of the User to maintain the CERCLA liability limitation.

Similarly, if the Subject Property should satisfy the definition of an Establishment as defined under the CTA and counsel determines that a future transaction constitutes a transfer of ownership, the applicability of the CTA would impose specific investigation and/or remediation requirements onto the Certifying Party. SLR is focused on collecting and summarizing the technical information relevant to the Establishment definition for evaluation by counsel addressing the legal aspects of a transaction.

1.4 SCOPE OF WORK, SIGNIFICANT ASSUMPTIONS, TERMS AND CONDITIONS

The scope of work, significant assumptions, and terms and conditions applicable to this Phase I ESA are identified in the following documents:

- SLR's Engagement Letter dated March 4, 2022
- ASTM Standard Practice, Designation E1527-13
- CTDEEP's SCGD
- Statement of Limitations presented in Appendix F of this report

1.5 USER/RELIANCE

This report was prepared for the exclusive use of the Town of Bloomfield. No other entity may rely on the information presented in the report without the express written consent of SLR. Any use of this Phase I ESA report constitutes acceptance of the terms and conditions under which it was prepared. SLR's liability extends only to its client and not to any other parties who may obtain the Phase I ESA report.

1.6 USER-PROVIDED INFORMATION

SLR requested the following information from the User of this ESA report:

Information on environmental liens on the Subject Property:	The User reported no knowledge of environmental liens on the Subject Property.
Information on Subject Property activity and use limitations (AULs):	The User reported no knowledge related to AULs on the Subject Property.
Specialized knowledge or experience of the User that is material to RECs in connection with the Subject Property:	The User reported no specialized knowledge or experience material to RECs in connection with the Subject Property.
Knowledge that Subject Property purchase/sale price is significantly lower than market value:	The User reported no knowledge that the Subject Property purchase/sale price is significantly lower than market value.
Commonly known or reasonably ascertainable information about the Subject Property material to RECs:	The User reported no commonly known or reasonably ascertainable information about the Subject Property material to RECs.

1.7 USER-PROVIDED DOCUMENTS

The User did not provide documents for SLR review.

2. SUBJECT PROPERTY AND SURROUNDING AREA OBSERVATIONS

Access to the Subject Property was provided by Mr. Matthew Childress, Lead Building Maintainer for the Town of Bloomfield.

2.1 METHODOLOGY

SLR utilized the following general methodology during its reconnaissance of the Subject Property:

- Traverse the outer boundary of the Subject Property.
- Traverse transects across the exterior portions of the Subject Property.
- Traverse the periphery of all structures on the Subject Property.
- Observe accessible interior areas including but not limited to basements, outbuildings, utility areas, and a representative sample of occupied spaces on ground level and upper floors.

2.2 RESTRICTIONS

No weather, facility or Client-related restrictions were encountered during the site visit.

2.3 SUBJECT SITE

2.3.1 SUBJECT PROPERTY DESCRIPTION AND LAYOUT

The Subject Property comprises two parcels totaling 1.06 acres in the central portion of Bloomfield, Connecticut. The property is zoned as BCD and is currently owned by the Town of Bloomfield.

The main parcel (Parcel No. 31-372) consists of 0.77 acres and the second parcel (Parcel No. 31-372), located northerly to the main parcel, consists of 0.29 acres. Within the main parcel, the property is developed with a three floor (Ground, 1st and 2nd) municipal building spanning 24,399 square feet and an asphalt parking lot that wraps around the building from the west side up to the north side of the building. Wash Brook is located on the western boundary of the property beyond the paved parking lot and flows from north to south. Two storm water drains are located at the northeast and southeast exterior corners of the building, which discharge collected storm water into Wash Brook.

The Subject Property is bound to the north by an empty lot that has been redeveloped into additional parking. Beyond this lot is an empty undeveloped lot consisting of grass and soil. Bound to the west of the Subject Property, beyond the brook, is a municipal building that functions as a storage shed for the town. The Subject property is bound to the east by State Highway 189 (Tunxis Avenue) beyond which lies a public park. The Site is bound to the south by State Highway 178 (Mountain Avenue) beyond which lies residential dwellings. Access to the Subject Property is provided via State Highway 178.

2.3.2 INTERIOR OBSERVATIONS

The library is heated with natural gas based on information provided by Mr. Childress. The gas boiler in the mechanical room is located in the north portion of the basement. The room contains the gas boiler along with a cooling system and electrical transformers and fuse boxes. The concrete floor contained multiple drains. Minor staining was visible in the underlying concrete floor around the drain situated towards the center of the room likely due to condensate from the coolant system. The northeast corner of the mechanical room contained a service room for the hydraulic elevator. Within the room is an oil reservoir for the elevator system. The elevator services the ground level and the second floor. It does not continue to the third floor.

A slop sink was also located in the maintenance closet along with routine cleaning supplies. The second floor is an open floor plan consisting of bookshelves and desks. The third floor (top floor) is office space. There is a service room on the west facing wall hosting the main components of the HVAC system which includes the compressor. There is a gas-fired boiler in this room.

2.3.3 EXTERIOR OBSERVATIONS

The building's construction composition includes brick veneer and concrete exterior walls, drywall interior walls, steel decking, and slate and gable roofing. According to Mr. Childress, the two storm water catch basins discharge into Wash Brook. One pad-mounted electrical transformer is located at the northeast corner of the Subject Property. The transformer is labeled as non-PCB and no evidence of a release was observed in the vicinity of the transformer.

According to Mr. Childress, no groundwater monitoring wells are present at the Subject Property, and none were observed during the Site visit. SLR did not observe evidence of staining or release in exterior areas of the Subject Property.

Utilities and additional Subject Property features observed during the Site reconnaissance are detailed in the table below. Figures presented in Appendix A depict the general location of the Subject Property and general Site features. Photographs are provided in Appendix B.

Estimated % of Subject Property covered by buildings and/or pavement:	Approximately 90%
Potable water provider:	Metropolitan District Hartford, Connecticut (MDC)
Water wells:	None observed
Sewage disposal method:	Municipal sewage system
Electric utility:	Eversource
Natural gas utility:	Connecticut Natural Gas (CNG)
Emergency generators:	None observed
On-site pits, ponds, or lagoons:	None observed
Stained soil or pavement:	None observed
Stressed vegetation:	None observed
On-site solid waste disposal including land filling, dumping, disturbed soils, or direct burial activities:	None observed

2.3.4 SUBJECT PROPERTY OPERATIONS

The Subject Property is currently a municipal library with no other operations.

2.3.5 MATERIAL HANDLING AND STORAGE

The table below describes the observations made by SLR during the Site reconnaissance, in interviews, or the records review portions of the assessment:

Observation	Description
Hazardous substances and petroleum products:	Hazardous substances and petroleum products were not observed at the Subject Property. According to Mr. Childress, cleaning chemicals are stored in the maintenance room.
Other materials:	None observed
Strong, pungent, or noxious odors:	None noted
Staining:	Staining was observed on the mechanical room floor. Staining was located around the floor drain and was released from metal piping extending from the cooling system. Staining is a result of condensate produced by this cooling system.
Pools of liquid:	None observed
Unidentified substance containers:	None observed
Polychlorinated biphenyls (PCB)-containing equipment:	None observed

2.3.5.1 Underground Storage Tanks/Structures

No active underground storage tanks (USTs) are currently present at the Subject Property.

Based on information provided by the Connecticut Department of Energy and Environmental Protection (CTDEEP), one 5,000-gallon heating oil UST was installed at the Subject Property in 1962. According to an *Underground Storage Tank Closure Report* prepared by RED Technologies, LLC (“RED”) in February 2014, the UST was located outside of the northeast corner of the building and was historically closed-in-place in 1986.

On February 12, 2014, RED provided UST closure services for the aforementioned 5,000-gallon UST, including the removal of 4,490 gallons of heating oil/water mixture from the UST via vacuum tanker truck. The UST was then cleaned and removed. RED collected a total of five post-excavation soil samples, including a sample from each sidewall at a depth of 6-8 feet below ground surface (bgs) and one bottom sample at a depth of 10 feet bgs. The samples were analyzed for volatile organic compounds (VOCs), extractable total petroleum hydrocarbons (ETPH), and polycyclic aromatic hydrocarbons (PAHs).

Laboratory analytical results of the side wall soil samples did not detect constituents exceeding laboratory detection limits. No analytes were detected from the sidewall samples in exceedance of their respective CTDEEP Remediation Standard Regulation (RSR) criteria. The bottom soil sample did not detect VOCs or

ETPH constituents exceeding laboratory detection limits; however, PAH constituents were detected in excess of CTDEEP RSR criteria. RED attributed the elevated PAH detections to historic fill material in the area.

2.3.5.2 Aboveground Storage Tanks

No Aboveground Storage Tanks (ASTs) are currently present at the Subject Property.

2.3.6 WASTE GENERATION

The Subject Property utilizes one dumpster for recycling and one dumpster for non-regulated solid waste. General refuse is collected by the Town of Bloomfield's Public Works Department. No additional wastes are generated at the Subject Property. No evidence of staining or release was observed in waste storage areas at the Subject Property.

2.3.7 WATER SUPPLY

The MDC provides potable water to the Subject Property. No groundwater supply wells were observed during the site visit or disclosed by Mr. Childress.

2.3.8 WASTEWATER

Based on available information, the Subject Property currently generates sanitary wastewater only. Site plans indicate that the Subject property is connected to the municipal sewage system and wastewater is discharged to the Town of Bloomfield Municipal treatment facility.

2.3.9 STORM WATER

Storm water runoff at the Subject Property is expected to drain via storm water catch basins on the northwestern, western and southwest portions of the Subject Property. The storm water collected in these drains flows westward to Wash Brook. Storm water flowing off the paved parking lot is presumed to flow westward toward the west lying drain as the lot is pitched in that direction. Any storm water not collected in the drains presumably flows via overland flow to Wash Brook or infiltrates into unpaved areas. No evidence of staining or release was observed to storm water conveyances at the Subject Property.

According to Mr. Childress, during periods of intense rain the parking lot as well as the ground level of the library has historically flooded.

2.3.10 CONNECTICUT TRANSFER ACT

The Connecticut Transfer Act (Connecticut General Statutes [CGS] Sections 22a-134 through 22a-134e, or ("CTA") requires the disclosure of environmental conditions when ownership of certain real properties and/or businesses ("Establishments") are transferred. The CTA defines an "Establishment" as including

any real property or business operation from which, on or after November 19, 1980, "there was generated, except as the result of remediation of polluted soil, groundwater, or sediment, more than one hundred (100) kilograms of hazardous waste in any one month." The term Establishment also includes any real property or business operations where hazardous waste generated at a different location was recycled, reclaimed, reused, stored, handled, treated, transported or disposed. Further, any real properties upon which the following business operations were performed on or after May 1, 1967, are also considered Establishments: dry cleaning; furniture stripping; or vehicle body repair, regardless of the amount of hazardous waste that may have been generated on-site. Recent amendments to the CTA exclude the one-time generation of hazardous waste in any one month as a result of the first time such waste was generated.

SLR reviewed the CTDEEP's Document Online Search Portal and Manifest Databases. No hazardous waste manifests were identified for the Subject Property. Additionally, Mr. Childress was not aware of the generation of hazardous waste at the Subject Property. As the Subject Property has never operated as one of the aforementioned named business operations (i.e., dry cleaning, furniture stripping, or vehicle body repair), nor generated hazardous wastes in quantities exceeding 100 kilograms per month dating back to 1967, it does not appear that the Site meets the definition of an "Establishment" pursuant to the CTA. Legal counsel experienced with these Connecticut environmental statutes and regulations should be consulted regarding the legal implications of the technical findings presented herein.

2.4 ADJOINING PROPERTIES

2.4.1 AREA DESCRIPTION

The Subject Property is situated within a commercial and residential mixed area of Bloomfield, Connecticut. Current uses of adjoining properties are described in the following table:

North	The northern adjacent properties comprise an empty lot.
South	To the south is Mountain Avenue, beyond which is a residential commercial apartment complex (3-9 Mountain Avenue).
East	To the east is Tunxis Avenue, beyond which is a park.
West	To the west, beyond Wash Brook, is a warehouse.

2.4.2 DISCHARGES, MIGRATION, OR RUNOFF OF POTENTIAL CONTAMINANTS FROM SURROUNDING PROPERTIES

No evidence of discharges or migration of potential contaminants from surrounding properties was observed at the time of the site visit.

3. RECORDS REVIEW

3.1 FEDERAL/STATE ENVIRONMENTAL RECORDS

A regulatory agency database search report was obtained from a third-party environmental database search firm, Environmental Data Resources, Inc. (EDR). A copy of the regulatory database report, including the date the report was prepared, the date the information was last updated, and the definition of databases searched, is provided in Appendix C.

3.1.1 LISTINGS FOR SUBJECT PROPERTY

The Subject Property was identified in the following regulatory database reports: Facility Index System (FINDS), Leaking Underground Storage Tank (LUST), UST, SPILLS and ASBESTOS.

- The FINDS listing associates the Subject Property with the Underground Storage Tank Program
- The ASBESTOS listing is associated with asbestos removal/abatement activities at the Subject Property from 2005 to 2021.
- The SPILLS database details two separate releases at the Subject Property. The first release is related to an in-ground tank failure and #2 fuel oil release in 2013 (Case No. 201303390). Soil was removed as corrective action and incident was closed. The second incident was a release of antifreeze from a motor vehicle accident in 2013 (Case No. 201302299). The antifreeze was contained and sanded and no additional action was necessary. This is also a closed incident.
- The LUST listing is associated with the first SPILLS listing, discussed above. According to the CTDEEP *List of Contaminated or Potentially Contaminated Sites (December 2021)*, the LUST case is “completed”.
- Site listed in UST database for 5,000 gallon fuel oil UST previously on-site. The UST was removed in 2014 and is discussed in further detail in Section 2.3.5.1. .

3.1.2 NOTABLE LISTINGS FOR NEARBY SITES

SLR reviewed the regulatory database report pertaining to listings presented in the area surrounding the Subject Property. Listings with the highest potential for impact (i.e., adjacent or upgradient properties identified in release-related databases) to the Subject Property are described further below.

- Mobile Service Station - 5 Tunxis Avenue: The property was previously occupied by a Mobile Service Station and is located adjacent to and north of the Site. Based on the EDR Report, the parcel is at higher gradient than elevation than the Subject Property. The address is listed in the following databases: LUST; UST; CT Contaminated or Potentially Contaminated Sites list (CPCS); the Resource Conservation and Recovery Act (RCRA) No Longer Regulated (NLR)/MANIFEST, FINDS; the

Enforcement and Compliance History Information database (ECHO); and Voluntary Cleanup Priority List (VCP).

The property historically utilized at least nine USTs as part of its operations as a filling station (noted as up to 11 USTs in prior reports, discussed below). These USTs reportedly included a 12,000-gallon gasoline UST (Tank #1AR1), an 8,000-gallon gasoline UST (Tank #2BR1), a 5,000-gallon gasoline UST (Tank #3CR1), two 550-gallon gasoline USTs (Tank #4DR1 and 5DR1), a 1,000-gallon used oil UST (Tank #9HR1), and three 10,000-gallon gasoline USTs (Tank #6ER1, 7FR1, and 8GR1). These USTs are listed as having been removed from the property in 2004.

A release of gasoline is associated with the historical UST systems, which was reported during UST closure activities on November 4, 1988 (Case No. 30061/2004-05160). According to the EDR report, a total of 599 tons of soil was removed. According to the CTDEEP CPCs, the status of the LUST case is listed as “completed”.

According to a *Remedial Excavation Report* prepared by Kleinfelder dated February 3, 2021, the adjacent property has contaminated soil and groundwater as a result of petroleum hydrocarbons being released from the historic gasoline, heating oil, and fuel oil USTs previously. According to the prior reports, the facility historically operated a total of 11 USTs. The facility was entered into the Connecticut voluntary remediation program (i.e., the VCP) in 2011, pursuant to the Regulations of Connecticut State Agencies (RCSA) sections 22a-133k-1 et. seq.

On June 8, 2021, Kleinfelder submitted a public notice announcing plans for soil excavation and groundwater remediation activities to be completed by the summer of 2021. From June to August of 2021, three excavation activities were conducted, which also included the sampling of 12 monitoring wells, and collection of 30 total soil samples. Approximately 1,085 tons of petroleum-impacted soil was excavated and removed from the facility during remedial excavation activities. A total of 4,509 gallons of groundwater and rinse water was transported off-site for disposal during de-watering activities. Samples indicated contaminated soil exceeding state criteria thresholds of ETPH and various PAHs. These impacts appear to be localized in the northwestern portion of the property, although one smaller area was present along the northern Subject Property boundary. The report indicates that the groundwater flows in a west-northwest direction away from the Subject Property. Based on the downgradient location of impacts relative to the Subject Property, the northern adjacent property is not considered a REC.

- A&S Auto Sunoco located at 35 Tunxis Avenue is approximately 845 feet north of the Subject Property. This location is listed in the LUST database for a release occurring in 1998. This incident was a spill of gasoline and waste oil of an unknown amount. This is a closed case. This property also appears in the MANIFEST database for a hazardous waste manifest that was created in 1986. Substance shipped fit the waste oil & flammable liquid US DOT description.

Although several other properties within the search radius were identified in release-related databases, those properties were determined as not environmentally significant based on status, distance, and/or gradient relative to the Subject Property. Details regarding these additional facility listings are presented in the database search report in Appendix C.

3.2 LOCAL/REGIONAL ENVIRONMENTAL RECORDS

SLR contacted the following sources to request information pertaining to the Subject Property use and/or indicative of RECs in connection with the Subject Property:

Agency Name	Finding
Connecticut Department of Energy & Environmental Protection 79 Elm Street Hartford, CT 06106	SLR submitted a file review request to CTDEEP on March 8, 2022 and conducted an in-person review of CTDEEP's records on March 9, 2022 (manifests, underground storage tanks, spills, List of Contaminated or Potentially Contaminated Sites, Significant Environmental Hazards List) for information pertaining to spills, releases, inspections, violations, or any other environmentally significant information. The CTDEEP file room contained a UST Life Expectancy document, a UST closure report, a UST notification, and a figure depicting on-site location of the UST.
Bloomfield Town Hall Departments 800 Bloomfield Avenue Bloomfield, CT 06002	SLR performed a, in-person review of publicly available information with the Bloomfield Town Hall Zoning department on March 22, 2022. Documents gathered range from various permits/certifications of use to site maps for building renovation plans. Information provided is summarized in relevant sections of this report.
Bloomfield Fire Marshal 18 Winterbury Avenue Bloomfield, CT 06002	SLR requested site information from the Bloomfield Fire Department on March 21, 2022. Information provided is summarized in relevant sections of this report.
Bloomfield Health District 693 Bloomfield Avenue Ste 3, Bloomfield, CT 06002	SLR requested site information from the Bloomfield Health District on March 23, 2022. Information provided is summarized in relevant sections of this report.

3.3 HISTORICAL RECORDS

3.3.1 SUBJECT PROPERTY HISTORICAL USE SUMMARY

The southern and northern portions of the Subject Property have been developed with a municipal building and a masonic temple, respectively, dating back to 1932. Originally, the southern building was a town hall which was later demolished and redeveloped into the library from 1963 to 1965. The library building underwent a multitude of renovations from 1963-1988. Notable historical renovations include the demolition of the existing town hall in 1963, renovation of the first floor of the building in 1987, and additional handicapped accessibility features in 1988. The existing temple appears to have been demolished sometime between 2008 and 2010 and was redeveloped as a paved parking area for the current library building.

3.3.2 HISTORICAL SOURCE SUMMARY

SLR reviewed historical records to identify historical activities that present or indicate the potential to present an REC or AOC to the Subject Property. Documentation for this section is provided in Appendix D.

Year(s)	Description	Source(s)
1892-1928	<i>Subject property:</i> No structures are depicted at the site	Topos (1892, 1906, 1928)
	<i>Surrounding properties:</i> No structures are depicted.	
1930s	<i>Subject Property:</i> According to the aerial photographs, the existing municipal building was constructed before 1932. The building is situated on the eastern portion of the Subject Property and is depicted as the town hall.	Aerial Photo (1932)
	<i>Surrounding Properties:</i> The surrounding area is developed with residential or commercial buildings to the northeast and south. To the west of the Subject Property is the municipal shed as well as various other buildings, but it is undeveloped or agricultural land. There is a gas fill station in the north adjacent property. To the east, across from Tunxis Avenue, there is a grassy park with buildings just beyond. To the south, across from Mountain Avenue is a cluster of buildings surrounded by undeveloped land.	
1940s	<i>Subject Property:</i> According to the aerial photograph, the parcel was not developed any more.	Aerial Photo (1941, 1944)
	<i>Surrounding Properties:</i> The north, east and south appear to have scattered developments of commercial or residential building. The land to the west is still undeveloped.	
1950s	<i>Subject Property:</i> No significant changes.	Aerial Photos (1950, 1958); Topo (1954)
	<i>Surrounding Properties:</i> No significant changes.	
1960s	<i>Subject Property:</i> The Subject Property underwent demolition and redevelopment in 1965. The building was converted into Prosser Library.	Aerial Photos (1962)
	<i>Surrounding Properties:</i> Land to the west of the Subject Property has been developed with a commercial building. Various other developments are now present to the north, east and west of the Subject Property. Residential development has increased to the northwest, and by 1967, Norton School has been constructed. Commercial buildings have been constructed or expanded on properties southwest of the Subject Property. Select buildings in this area have associated storage areas or commercial vehicle parking. A commercial building on the southern adjacent property has also expanded.	
1970s	<i>Subject Property:</i> No significant changes.	Aerial Photos (1970, 1972)
	<i>Surrounding Properties:</i> A commercial building has been constructed to the east of the Subject Property. Buildings that were formerly to the east of the Subject Property have been demolished. A residential living community appears to have been developed to the southwest of the Subject Property. Otherwise, the surrounding properties appear similar to previous aerial photographs.	
1980s	<i>Subject Property:</i> No significant changes.	Aerial Photo (1985, 1989)
	<i>Surrounding Properties:</i> New developments appear about 830 feet to the south of the Subject Property. Additionally, the land to the northeast of the Subject Property has various new commercial developments. Adjacent properties do not appear to have any new developments.	
1990s	<i>Subject Property:</i> No significant changes.	Aerial Photos (1992, 1995)
	<i>Surrounding Properties:</i> Parcel to the west of the Subject Property was redeveloped into a larger commercial building set back off the street with a substantial parking lot in front. A wooded area on the western adjacent property has been cleared, and a residential development has been constructed.	
2000s	<i>Subject Property:</i> No significant changes.	

Year(s)	Description	Source(s)
	<i>Surrounding Properties:</i> Surrounding area did not appear to undergo new developments.	Aerial Photos (2005, 2008)
2010s	<i>Subject Property:</i> No significant changes.	Aerial Photos (2012, 2016)
	<i>Surrounding Properties:</i> By 2012, the parcel northerly adjacent to the Subject Property removed the building. It has become a paved lot used for additional parking for the Subject Property.	

3.4 PRIOR REPORTS

SLR was provided a copy of an *Underground Storage Tank Closure Report* prepared by RED Technologies, LLC (RED) dated March 2014. This report is discussed in further detail in Section 2.3.5.1.

3.5 PHYSICAL SETTING

Topography:	According to the Town of Bloomfield's GIS website, the Subject Property is located at an elevation of between approximately 110 and 120 feet above mean sea level (amsl). From the brook at the border of the parcel moving east, the Subject Property gradually increases in elevation up to the residence. From the residence, site topography levels off.
Soil/Bedrock Data:	According to the USDA's NRCS Soil Map Website, the subject parcel is comprised of Elmridge fine sandy loam, and asphalt. According to CTECO, the Site is situated on Portland Arkose bedrock. The terrane is described as Newark Terane/ Hartford and Pomperaug Mesozoic Basins. According to CTECO, much of the Subject Property is Urban Land. The other part of the Subject Property, the soil beneath the structure, is Elmridge fine sandy loam.
Classification of Groundwater/Estimated Direction of Gradient:	CTECO interactive mapping indicates that the Site is within an Aquifer Protection Area. Groundwater beneath all of the Site is mapped as "GA". GA groundwater is generally defined by CTDEEP as existing or potential private and potential public supplies of water suitable for drinking without treatment and used as a baseflow for hydraulically connected surface waterbodies. The closest surface water body is the Wash Brook at the back of the Site parcel. This brook runs north to south from Filley Pond is designated as Class A surface waterbodies. The Brook appears to be classified as Class SA. Class A surface waterbodies are designated as habitat for fish and other aquatic life and wildlife, potential drinking water supply, recreation, water supply for industry and agriculture, and navigation. Class SA waters are designated as habitat for marine fish, or other aquatic life and wildlife, shellfish harvesting for direct human consumption, recreation, industrial water supply and navigation. There are presently two United States Geological Survey (USGS) wells within a quarter mile radius of the Site. One well is located 713 feet from the Site and has a depth of 465 feet. The second well is located 993 feet from the Subject Property and is at a depth of 120 feet. The EDR report identified an additional total of 12 USGS wells within the ASTM search radius. Four of the identified wells are within a half-mile radius of the Site. The remaining eight USGS wells are within a mile radius of the Subject Property. In addition to these wells, several groundwater monitoring wells are present on the northern adjoining property in association with ongoing voluntary cleanup activities (see Section 3.1.2). According to previous reports for the adjoining property, groundwater is located between 5.79 and 12.55 feet bgs and flows to the west.

4. INTERVIEWS

4.1 FINDINGS FROM INTERVIEW WITH OWNER'S REPRESENTATIVE

SLR did not conduct any in-person interviews; An Owner Questionnaire was provided to Mrs. Nancy Haynes, Town of Bloomfield Purchaser and Risk Manager. Mrs. Haynes did not complete the questionnaire. Therefore, no information is available for section 4 of the report.

Name, Title, Years Familiar with Subject Property:	Mr. Matthew Childress, the Town of Bloomfield's Lead Building Maintainer.
Current Use of Subject Property:	The Subject Property is currently a library.
Past Use(s) of Subject Property:	The Subject Property has been utilized as a library since its construction.
Current Use of Surrounding Properties:	See Section 2.4.1.
Past Use(s) of Surrounding Properties:	See Section 3.3.2.
Current or Past Hazardous/Petroleum Material Use, Storage, Disposal:	None known
Current or Past Regulatory Action(s):	Mr. Childress was aware of historical investigations associated with a former UST (see Section 2.3.5.1)
Past Releases of Hazardous/Petroleum Materials on the Property:	None known

4.2 REQUIRED QUESTIONS

Interview Questions	Owner/Operator
Litigation Relevant to Hazardous Substances or Petroleum Products in, on, or from the Subject Property?	Not aware
Administrative Proceedings Relevant to Hazardous Substances or Petroleum Products in, on, or from Subject Property?	Yes; associated with former UST (see Section 2.3.5.1)
Notices from Any Governmental Entity Regarding Possible Violations of Environmental Laws or Possible Liability Relating to Hazardous Substances?	Not aware

4.3 FINDINGS FROM INTERVIEW WITH MAJOR OCCUPANTS

No other major occupants are present at the Subject Property.

4.4 SUMMARY OF FINDINGS FROM OWNER-PROVIDED INFORMATION

Findings from the interview were consistent with information from other sources.

5. SIGNIFICANT DATA GAPS

Data gaps are a lack of or inability to obtain information required by the ASTM E1527 Practice despite good faith efforts by the environmental professional to gather such information. Data gaps may have resulted from incompleteness in any of the activities required in the Practice including but not limited to the site reconnaissance, records review, or interviews. The presence of a data gap may or may not present a REC due to the possibility that a REC could be discovered if the missing information is obtained.

No significant data gaps were identified.

6. CONCLUSIONS

SLR performed a Phase I ESA of the Site, which consists of 1.06-acre parcel at 1 Tunxis Avenue in Bloomfield, Connecticut. The Phase I ESA was performed in conformance with the scope and limitations of ASTM Practice E1527-13 and in general accordance with the relevant sections of the CTDEEP *Site Characterization Guidance Document* (SCGD; revised December 2010) with respect to the identification of AOCs at the Site.

Recognized Environmental Conditions (RECs)

The following REC was identified in connection with the Subject Property:

- **PAH Impacts in On-Site Soil:** One 5,000-gallon heating oil UST was formerly present at the Subject Property. The UST was installed outside of the northeast corner of the building in 1962 and closed-in-place in 1986.

The UST was removed from the Subject Property in November 2014. Subsequent to removal, a total of five post-excavation soil samples were collected, including four sidewall samples and one bottom sample. The samples were analyzed for volatile organic compounds (VOCs), extractable total petroleum hydrocarbons (ETPH), and polycyclic aromatic hydrocarbons (PAHs). Laboratory analytical results of the side wall soil samples did not detect constituents exceeding laboratory detection limits. No analytes were detected from the sidewall samples in exceedance of their respective CTDEEP Remediation Standard Regulation (RSR) criteria. The bottom soil sample did not detect VOCs or ETPH constituents exceeding laboratory detection limits; however, PAH constituents were detected in excess of CTDEEP RSR criteria. The elevated PAH detections to historic backfill material in the area.

Additionally, the Subject Property is listed as a Leaking Underground Storage Tank (LUST) facility associated with a 2013 release (Case No. 201303390). Although the CTDEEP *List of Contaminated or Potentially Contaminated Sites* (December 2021) lists the status of the case as “completed”, SLR was not provided confirmation that the case has been issued formal closure by the CTDEEP. Based on the elevated presence of PAH in on-site soils, this constitutes a REC.

Historical RECs (HRECs)

SLR did not identify evidence of HRECs in association with the Subject Property.

Controlled RECs (CRECs)

SLR did not identify evidence of CRECs in association with the Subject Property.

Area of Concern (AOCs)

The following AOC was identified in conjunction with the Site property:

- **Demolition Debris/Impacted Fill:** The former structure (temple) at the Site was demolished between 2008 and 2010. No information was identified regarding the removal of the debris, or quality of the building materials used in construction of the former Site structures. Based on the age of the former building, there is a potential for hazardous building materials (lead-based paint, PCB-containing caulk/window glazing, etc.) to have been present. The demolition materials (if present) and demolition activities could have resulted in impacts to surrounding soils.

SLR notes that the definition of an AOC is different from the definition of a REC in the ASTM standard, and therefore, not all AOCs are considered RECs. The presence of the demolition debris or fill is not defined as a potential release but may result in impacted soil at the Site.

Significant Data Gaps

No significant data gaps were identified.

APPENDIX A

FIGURES

APPENDIX B

SUBJECT PROPERTY PHOTOGRAPHS

APPENDIX C

THIRD-PARTY VENDOR DATABASE REPORT

APPENDIX D

HISTORICAL SOURCES

APPENDIX E

SUPPORTING DOCUMENTS

APPENDIX F

LIMITATIONS

LIMITATIONS

The conclusions presented in this report are professional opinions based on data described in this report. These opinions have been arrived at in accordance with currently accepted environmental industry standards and practices applicable to the work described in this report. The opinions presented are subject to the following inherent limitations:

1. This report was prepared for the exclusive use of the entity referenced in Section 1.6. SLR has no liability for this report and its contents to any other entity.
2. This Phase I ESA report is subject to the terms and conditions in the SLR proposal referenced in Section 1.4 and in the contract between SLR and its client under which the work was performed. Any use of the Phase I report constitutes acceptance of the limits of SLR's liability specified in the contract. SLR's liability extends only to its client and not to any other parties who may obtain the Phase I report.
3. SLR derived the data in this report primarily from visual inspections, examination of records in the public domain, and interviews with individuals having information about the Subject Property. The passage of time, manifestation of latent conditions, or occurrence of future events may require further study at the Subject Property; analysis of the data; and reevaluation of the findings, observations, and conclusions in the report.
4. The data reported and the findings, observations, and conclusions expressed in the report are limited by the scope of work. The scope of work is presented in Section 1.4 and was agreed to by the client.
5. SLR's Phase I ESA reports present professional opinions and findings of a scientific and technical nature. The report shall not be construed to offer legal opinion or representations as to the requirements of, nor compliance with, environmental laws, rules, regulations, or policies of federal, state, or local governmental agencies.
6. The conclusions presented in this report are professional opinions based on data described in this report. They are intended only for the purpose, Subject Property location, and project indicated. This report is not a definitive study of contamination at the Subject Property and should not be interpreted as such. An evaluation of subsurface soil and groundwater conditions was not performed as part of this investigation, unless indicated in Section 1.4. No sampling or chemical analyses of structural materials or other media was completed as part of this study unless explicitly stated in Section 1.4.
7. This report is based, in part, on unverified information supplied to SLR by third-party sources. While efforts have been made to substantiate this third-party information, SLR cannot guarantee its completeness or accuracy.

APPENDIX G

QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

PHASE II ENVIRONMENTAL SITE INVESTIGATION

**PROSSER LIBRARY
1 TUNXIS AVENUE
BLOOMFIELD, CONNECTICUT**

**Prepared for:
Town of Bloomfield**

Client Ref: 144.12571.00015

June 2022

SLR

PHASE II ENVIRONMENTAL SITE INVESTIGATION

Prepared for:

Town Of Bloomfield (TOB)

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Peter Shea, LEP
Principal Environmental Scientist

Matthew Rose
Project Environmental Scientist

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Purpose and Scope.....	1
1.2 Site Description	1
1.3 Previous Environmental Investigation	2
2. PROJECT SCOPE AND CONCEPTUAL SITE MODEL	3
2.1 Project Scope.....	3
2.2 Conceptual Site Model (CSM)	3
3. REGULATORY FRAMEWORK	4
3.1 Regulatory Model.....	4
3.2 Soil Comparative Criteria	4
4. PHASE II ENVIRONMENTAL SITE INVESTIGATION.....	6
4.1 Phase II Investigation Activities.....	6
4.1.1 Soil Boring Installation and Sampling	6
4.1.2 Laboratory.....	7
4.1.3 Quality Assurance/Quality Control (QA/QC) Samples	7
4.2 Phase II Investigation Results.....	8
4.2.1 AOC-1: Former Structure (Demolition Debris/Impacted Fill)	8
4.2.2 AOC-1 Conclusions.....	9
4.2.3 REC-1: Impacted Fill (Former UST).....	9
4.2.4 REC-1 Conclusions.....	10
5. QUALITY ASSURANCE/QUALITY CONTROL	11
5.1 Soil DQA/DUE Evaluation	11
6. CONCLUSIONS	12
6.1 Soil Investigation	12

FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Plan & Sampling Locations

TABLES

Table 1 – Summary of Soil Results

APPENDICES

Appendix A – Boring Logs

Appendix B – Laboratory Analytical Reports

1. INTRODUCTION

SLR International Corporation (SLR) has prepared this limited Phase II Environmental Site Investigation (Phase II ESI) report for the Prosser Library property located at 1 Tunxis Avenue in Bloomfield, CT (the "Site" or Subject Property") (see Figure 1). The parcel is owned by the Town of Bloomfield (TOB) and this report has been prepared for the TOB's use.

1.1 PURPOSE AND SCOPE

The purpose of a Phase II ESI is to evaluate if a release has occurred impacted soil and/or groundwater from identified recognized environmental conditions (RECs) or area of concern (AOC) as noted in the Phase I Environmental Site Assessment (ESA) dated April 2022. The scope and purposes of this work can be summarized as follows:

- SLR developed a Conceptual Site Model (CSM) in accordance with "prevailing standards and guidelines," including the Connecticut Department of Energy & Environmental Protection (CTDEEP) December 2010 *Site Characterization Guidance Document* (SCGD, [DEEP, 2010]). A CSM is a means to enumerate and organize the locations where previous commercial/industrial users of the Site may have handled, stored, used, and potentially released oil and/or hazardous materials commonly referred to as constituents of concern (COCs); the COCs for the Site include petroleum hydrocarbons, metals, and associated polycyclic aromatic hydrocarbons (PAHs) associated with urban fill or demolition debris. The model further identifies the nature of those materials and how they behave in their surrounding environment so that the investigation plan focuses on collecting samples of environmental media with the greatest potential to exhibit evidence of a release in the event that one had occurred.
- Assess environmental media to establish the presence or absence of a release of hazardous materials or petroleum products in the RECs or AOCs identified at the Site. Figure 2 shows each of the Site AOCs addressed in this report. In this instance, the Phase II Investigation work focused on the characterization of the urban fill documented at REC-1 and potential impacts from demolition debris in AOC-1.
- In the event that evidence of a release occurred, SLR documented the nature of the COCs and completed an initial comparison of the data to the numerical cleanup criteria listed in the Remediation Standard Regulations (RSRs) (Regulations of Connecticut State Agencies (RSCA) §22a-133k- 1 through 22a-133k-3, inclusive), which are applicable to the Site.

1.2 SITE DESCRIPTION

The Subject Property comprises two contiguous parcels totaling 1.06 acres in the central portion of Bloomfield, Connecticut. The Subject Property is zoned as Bloomfield Central District (BCD) and is currently owned by the Town of Bloomfield. The Site is improved upon by a three-story library in the southeast portion of the property with associated asphalt parking area in the northern and western portions of the site (Figure 2).

The site is bound to the north by a vacant lot (former service station); to the west by Wash Brook and then a vacant commercial building (former Riley Lumber); to the east by Tunxis Avenue, beyond which lies a park; and to the south by Mountain Avenue, beyond which lies residential/commercial.

Site History

The southern and northern portions of the Subject Property have been developed with a municipal building and a masonic temple, respectively, dating back to 1932. Originally, the southern building was a town hall which was later demolished and redeveloped into the library from 1963 to 1965. The existing temple appears to have been demolished sometime between 2008 and 2010 and was redeveloped as a semi-paved parking area for the current library building.

1.3 PREVIOUS ENVIRONMENTAL INVESTIGATION

Based on the Phase I ESA dated April 2022 the following REC and AOCs were identified:

- **REC-1: PAH Impacts in On-Site Soil:** One 5,000-gallon heating oil underground storage tank (UST) was formerly present at the Subject Property. The UST was installed outside of the northeast corner of the building in 1962 and closed-in-place in 1986. The tank was removed in November 2014 by RED Technologies, LLC (RED) on behalf of the Town.

Subsequent to its removal, RED collected five post-excavation soil samples consisting of four sidewall samples and one bottom sample. The samples were analyzed for volatile organic compounds (VOCs), ETPH, and PAHs. Laboratory analytical results of the sidewall soil samples did not detect constituents above the laboratory reporting limits (RL). The bottom soil sample did not detect VOCs or ETPH constituents above their RL. Several PAH constituents were detected at concentrations above the CTDEEP Remediation Standard Regulations (RSRs) numeric criteria. Based on these results RED concluded there was no release from the UST impacting the surrounding soil and that the elevated PAHs in soil was likely due to impacted fill present at the Site.

Additionally, the Subject Property is listed as a Leaking Underground Storage Tank (LUST) facility associated with a 2013 release (Case No. 201303390). Although the CTDEEP *List of Contaminated or Potentially Contaminated Sites (December 2021)* lists the status of the case as “completed”, SLR was not provided confirmation that the case has been issued formal closure by the CTDEEP. Based on the elevated presence of PAH in on-site soils, the Phase I ESA concluded the area as a REC.

- **AOC-1: Demolition Debris/Impacted Fill:** The former structure (temple) at the Site was demolished between 2008 and 2010. No information was identified regarding the removal of the debris, or quality of the building materials used in construction of the former Site structures. Based on the age of the former building, there is a potential for hazardous building materials (lead-based paint, PCB-containing caulk/window glazing, etc.) to have been present. The demolition materials (if present) and demolition activities could have resulted in impacts to surrounding soils.

2. PROJECT SCOPE AND CONCEPTUAL SITE MODEL

2.1 PROJECT SCOPE

SLR retained Soil Testing, Inc to complete the advancement of five soil borings; three soil borings to evaluate AOC-1 and two soil borings to evaluate REC-1. SLR oversaw the completion of the soil borings, screened the soil samples for evidence of impacts, characterized the geology encountered, collected one soil sample per boring and submitted to a state-certified laboratory for analysis of the COCs, and evaluated the analytical data to help determine the presence or absence of releases and impacts associated with the identified REC and AOC.

2.2 CONCEPTUAL SITE MODEL (CSM)

The CSM for the Site has been developed using available information. Selection of soil sampling locations and analyses included the following elements:

- COCs and their likely release mechanisms
- Environmental setting of the potential release, including characteristics of subsurface structures and materials that could influence migration
- Fate and transport characteristics of the released substances, including degradation products
- Potential migration pathways

The primary COCs on the Site include ETPH, PAHs, and select metals due to potential impacts associated with demolition debris or urban fill intermixed with the Site's surficial geology. Secondary COCs based on screening with a photoionization detector (PID) during sampling included VOCs for one soil boring (SB-1). The COCs are primarily associated with construction materials left in place following demolition activities or from importing for site development and not from a release.

3. REGULATORY FRAMEWORK

3.1 REGULATORY MODEL

Based on the findings of the Phase I ESA (SLR, 2022), the Site does not meet the definition of an “Establishment” as defined by the Connecticut Transfer Act (CTA) and thus is not subject to investigation and remediation requirements as established in the RSRs. Even though the RSRs do not technically apply to the Site they were used to evaluate the presence of contaminants within the investigation areas. This comparison allows for management of contaminated media, if detected, in a manner consistent with applicable regulations or if further investigation is warranted to delineate the impacts for transactional purposes or to evaluate potential risk to human health and the environment.

The following factors were used to evaluate the levels of COCs in soil at the Site.

- The Site is currently zoned for industrial/commercial use, and the future use of the Site is anticipated to be similar.
- According to the CTDEEP Water Quality Classification Map, the Site is located within an area where groundwater quality has been classified as GA, meaning that water is presumed to be suitable for consumption without pretreatment. No groundwater uses are known to exist in the Site area. Groundwater was not evaluated as part of this Phase II ESI. The focus of this limited Phase II ESI was on if a release to soil had occurred from the AOC/REC identified.
- The nearest named surface water body is the Wash Brook located along the western boundary of the Site.

3.2 SOIL COMPARATIVE CRITERIA

Based upon the information listed above, this section describes RSR criteria that would be applicable to the Site.

Direct Exposure Criteria (DEC)—The DEC was developed to be protective of human health in the event of direct contact with soil impacted by COCs. Regardless of the use or zoning of the property, the Residential DEC (Res DEC) apply to all properties in Connecticut. The RSRs also contain another set of DEC, the Industrial/Commercial DEC (I/C DEC), which can be used on nonresidential properties with the placement of an Environmental Land Use Restriction (ELUR) on the property. Such an ELUR would restrict the use of the property from residential uses as defined in the RSRs (§ 22a-133k-1(53)). The DEC apply to all soils within 15 feet of the ground surface regardless of the elevation of the water table. For the purposes of this assessment, both the RES DEC and I/C DEC have been considered.

Pollutant Mobility Criteria (PMC)—The PMC were developed to protect groundwater resources from soil-bound COCs that could mobilize and degrade groundwater quality. Because groundwater in the area of the Site has been classified by the CTDEEP as GA, the GA PMC will be used to evaluate the available soil data. These criteria apply to all soils located at or above the seasonal low-water table (estimated at 7 to 9 ft bgs).

Additional Polluting Substances (APS) - The RSRs contain numeric cleanup standards for 88 substances. When a contaminant at a Site is not one of the 88 substances listed in the RSRs, numeric criteria must be requested and approved by the Commissioner in order to complete cleanup at the Site under the RSRs, unless background concentrations are met. These are called APS criteria. For many substances, the Department has pre-evaluated available scientific information and has published numeric criteria that have been pre-evaluated. For the purposes of this evaluation, the published APS criteria have been considered where necessary.

4. PHASE II ENVIRONMENTAL SITE INVESTIGATION

This section presents the findings of this Phase II ESI activities for the AOC and REC identified in the April 2022 Phase I ESA.

4.1 PHASE II INVESTIGATION ACTIVITIES

SLR conducted field activities associated with the Phase II ESI on May 12, 2022. The REC and AOC were assessed for evidence of a release of hazardous substances using the CSM approach as required by the CTDEEP SCGD.

In preparation for Site investigational activities, the following preliminary activities were conducted:

- Contacting "Call Before You Dig" (CBYD) to mark buried utilities in the work areas prior to on Site intrusive investigations. Anticipated investigation areas were marked in white paint 72 hours prior to contacting CBYD. CBYD only marks certain utilities to the entry point to the building/property.
- Preparation of a Site-Specific Health & Safety Plan (SS-HASP).
- Performance of GPR survey to augment the CBYD markings and to clear the proposed boring locations.
 - No significant alterations to the original proposed boring locations were necessary following the utility mark-outs by CBYD and the private utility locating subcontractor.
- Contract with state-licensed drilling contractor (Soil Testing, Inc.)

4.1.1 Soil Boring Installation and Sampling

SLR oversaw the installation of five total soil borings, SB-1 through SB-5, by the subcontracted driller, Soil Testing, LLC on May 12, 2022. The soil borings were logged by SLR field personnel, and the soil was screened for visual staining, odors, or other evidence of impact. In addition, the presence of VOCs was evaluated using a calibrated PID. Attached Figure 2 shows the site boring locations, and a copy of the soil boring logs is included as Appendix A.

The soil sampling intervals were selected to characterize the maximum concentration of release and to confirm the presence of impacted soil if encountered. If the visual inspection and field screening of the soil did not indicate the presence of any impact, then the sample was collected at predefined intervals for laboratory analysis based upon the CSM.

During the sampling, the first five feet were hand cleared with a shovel and air knife, after which a track-mounted machine used the direct-push method for all boings. A disposable macro core sampler was used at 5-foot intervals for sample retrieval.

All reused drilling equipment was cleaned with an alconox detergent rinse between borings.

Upon completion, each soil boring was backfilled with excess soil from the cored location and asphalt-patched at grade.

The table below shows a summary of soil sample collection, including the associated AOCs, depth intervals, and the requested laboratory analyses.

AOC	Sample ID (Depth Interval in feet below grade)	VOCs	PAHs	ETPH	RCRA 8 metals
AOC-1 Impacted urban fill and building debris	SB-1 (0-2 ft)	X	X	X	X
	SB-2 (0-2 ft)	--	X	X	X
	SB-3 (5-7 ft)	--	X	X	X
REC-1 Impacted fill around UST	SB-4 (2-4 ft)	--	X	X	X
	SB-5 (2 – 4 ft) “DUP-001”	--	X	X	X

4.1.2 Laboratory

Soil samples were submitted to Complete Environmental Testing (CET) of Stratford, Connecticut, for analysis of the COCs identified above. A copy of the laboratory report is provided in Appendix B.

4.1.3 Quality Assurance/Quality Control (QA/QC) Samples

On September 1, 2007, CTDEEP introduced the requirement that all sample analysis comply with the RCPs. In May 2009, the Data Quality Assessment (DQA) and Data Usability Evaluation (DUE) process also became applicable. The RCP and DQA/DUE programs were developed to ensure that analytical data generated during investigation and remediation projects in Connecticut are of a known and appropriate quality. This process is in place to ensure achievement of the Data Quality Objectives (DQOs) in support of the eventual Verifications pertaining to CTA properties or for properties entered into a CTDEEP program (i.e., Voluntary Program or Brownfield).

The soil analyses performed during this Phase II ESI occurred after the implementation of these two programs. Therefore, the resulting laboratory analysis was conducted using the RCP procedures. SLR reviewed all laboratory reports to ensure accuracy and that reporting limits were in line with the applicable RSR numerical criteria. Additionally, all samples were collected into appropriate containers and preserved where required, and all sampling equipment was decontaminated prior to use.

All samples were stored on ice during transport to the laboratory using proper chain of custody procedures. Sample temperatures were logged at the lab and reported. A duplicate soil sample was collected to evaluate laboratory QA/QC procedures.

A summary of the soil analytical results is provided in Table 1 with the sample locations shown on Figure 2. A copy of the laboratory reports is provided in Appendix B.

4.2 PHASE II INVESTIGATION RESULTS

4.2.1 AOC-1: FORMER STRUCTURE (DEMOLITION DEBRIS/IMPACTED FILL)

SLR collected soil samples from three soil borings (SB-1, SB-2, and SB-3) completed to evaluate this AOC. Soil boring SB-1 was completed outside of the where the former temple structure was identified based on historical aerial coverage, while SB-2 and SB-3 were completed within the former structure footprint. The target depth for all three borings was 15 ftbg to determine if construction debris from demolition was present and to help determine soil quality. One soil sample per boring was collected where field screening indicated the greatest potential for COCs to be present.

Soil boring SB-1 was completed to the target depth of 15 ftbg. Based on the soils encountered the asphalt and base is approximately 6-inches in thickness. SLR personnel noted a strong petroleum odor just under the asphalt during the air-knife clearance process and PID reading of 396.5 parts per million (ppm). The odor and PID reading immediately decreased to non-detect within 1-foot from the surface.

The soil encountered below the asphalt was described as fill to approximately 6 ftbg consisting of brown fine sand and cobbles, but no indications of anthropogenic debris (i.e., glass, plastic, concrete fragments, brick fragments, or coal ash). Native overburden material was observed from 10 to 15 ftbg consisting of brown fine sand with some gravel. Groundwater was encountered at approximately 6 ftbg. A soil sample was collected from below the asphalt to two ftbg to evaluate the presence of the VOCs and the other COCs for the Site. The VOCs were added to the list due to the odor and PID reading indicating a possible presence of VOCs.

Soil boring SB-2 encountered refusals on what appears to be demolition debris at shallow depths within the former footprint of the structure. Attempts to air-knife and clear to 5-ftbg at several locations around proposed SB-2 encountered concrete fragments, asphalt, and trace woody debris. A sample of the surrounding soil was collected to evaluate the condition of the fill material from 0-2 ftbg.

Soil boring SB-3 was completed to a depth of 15 feet and encountered fill to a depth of 10 ftbg consisting of brick fragments, coal ash, and asphalt-like fragments. The fill was underlain by fine sand and silt to the bottom of the boring. Groundwater was encountered at approximately 10 ftbg. The soil sample was collected from 5-7 ftbg from within the fill area to evaluate soil quality.

Based on the soil results the only detection of ETPH above the RL was from sample SB-2, which is below the RSR numeric criteria. Several metals were detected above the RL and within typical site concentrations with the exception of barium and lead in SB-3. The result for lead (420 mg/kg) in SB-3 was above the RDEC of 400 mg/kg. VOCs were not detected in the shallow sample collected from SB-2 indicating the PID reading was an anomaly and likely due to the air-knife process and not indicative of a

release. Several PAH compounds were detected above their RL in all three soil samples with several PAH compounds at concentrations above their respective RSR criteria in the sample collected from SB-2.

4.2.2 AOC-1 CONCLUSIONS

Based on the soil results the fill encountered within the area outside of the former structure and the area inside the former structure contained several PAH compounds above their respective RL. Results from SB-2 indicate the fill has concentrations of PAH compounds above their respective RSR numeric criteria. ETPH was only detected in SB-2 and lead was detected at a concentration that exceeds the RDEC. VOCs do not appear to be present based on the results from SB-2 and observations of no odor or PID readings in the remaining soil borings. Lead was detected above the RDEC in the sample from SB-3. These impacts observed are not indicative of a “release” from current or former operations at the Site and are likely from “sources” within the intermixed demolition debris and/or urban fill.

Additional evaluation of the extent of impacts may be necessary, if the property is entered into a CTDEEP program, or if the Town decides to transfer the property in the future. The horizontal and vertical limits of soil impacts would be necessary and evaluation of groundwater quality if the Site is to achieve compliance with the RSRs under a CTDEEP program.

There is minimal potential to human health, or the environment based on the depth and location of the soils above the RSR criteria. All three borings were located within an area of asphalt that limits direct exposure and the sample for lead is below 4-feet, which would render the soil “inaccessible” under provisions in the RSRs. Special soil handling requirements would be needed if the area is disturbed or soil excavated, and relocation or disposal should be conducted in accordance with state regulations. Any soil re-located or disposed off should be placed below an impervious area, above the groundwater table, or placed below 4-feet of clean material to render the soil inaccessible.

4.2.3 REC-1: IMPACTED FILL (FORMER UST)

Previous environmental investigation within REC-1 was completed during the tank removal in 2014. The confirmation samples from the bottom of the tank grave indicated several PAH compounds were present above the RSR criteria. The results were not indicative of a release from the tank contents but were associated with impacted fill.

SLR completed two soil borings, SB-4 and SB-5, in proximately of the reported tank location (Figure 2) to evaluate the reported presence of PAHs in the fill and further assess soil quality in the area of the former tank.

Soil boring SB-4 encountered fill material consisting of brick fragments, concrete fragments and slabs, and trace coal to a depth of 9 ftbg. Refusal of the sampler was noted on what appears to be concrete fragments or slab at depth that may be attributed to the former Town Hall building demolished prior the construction of the existing library. A soil sample was collected from 2-4 ftbg within the observed fill layer.

Soil boring SB-5 was completed to the target depth of 15 ftbg with a more natural fill observed within the upper 5 feet consisting of brown fine sand and silt with trace to no evidence of anthropogenic material. Native sand and silt were observed from 5-15 ftbg and the soil sample was collected from 2-4 ftbg from within the fill material.

Based on the soil results ETPH was not detected in either sample above the RL. Metals were detected at typical background concentrations with no exceedance or elevated concentrations noted. Several PAH compounds were detected above the RL, but below their respective RSR numeric criteria in both samples.

4.2.4 REC-1 CONCLUSIONS

Based on the soil results the fill encountered at SB-4 was similar consistency identified in AOC-1 with anthropogenic material present and possibly due to the former town hall structure. The fill encountered at SB-5 appears more natural with little to no evidence of anthropogenic material. PAH compounds were detected in both samples indicating impacted fill from incidental sources and not indicative of a "release". The results were consistent with the findings of the previous investigation, but at concentrations below the RSR criteria.

Additional evaluation of the extent of impacted may be necessary, if the property is entered into a CTDEEP program, or if the Town decides to transfer the property in the future. The horizontal and vertical limits of soil impacts would be necessary and evaluation of groundwater quality if the Site is to achieve compliance with the RSRs under a CTDEEP program. There is minimal potential risk to human health and the environment based on the current concentrations below applicable RSR criteria and location of the impacted fill below existing grade. Soil disturbed within the REC should be managed in accordance with state regulations including soil re-use, or off-site disposal as a controlled material (i.e., impacted soil).

5. QUALITY ASSURANCE/QUALITY CONTROL

The parameters of precision, accuracy, representativeness, comparability, and sensitivity were used to evaluate the quality of analytical data in quantitative and qualitative terms using the information provided by the laboratory in the Exceptions Report. This evaluation is detailed below.

5.1 SOIL DQA/DUE EVALUATION

To evaluate the sampling technique and homogeneity/heterogeneity of the sample matrix, one duplicate soil sample was collected from sample SB-5. The relative percent difference (RPD) was calculated for both sets of samples using the detected compounds. CTDEEP guidance on the Reasonable Confidence Protocols (RCPs) indicates that for field duplicate soil sample data, an RPD of less than 50% is acceptable and represents reliable data. For all sampled parameters in SB-5 and its duplicate, the RPD was lower than approximately 21%.

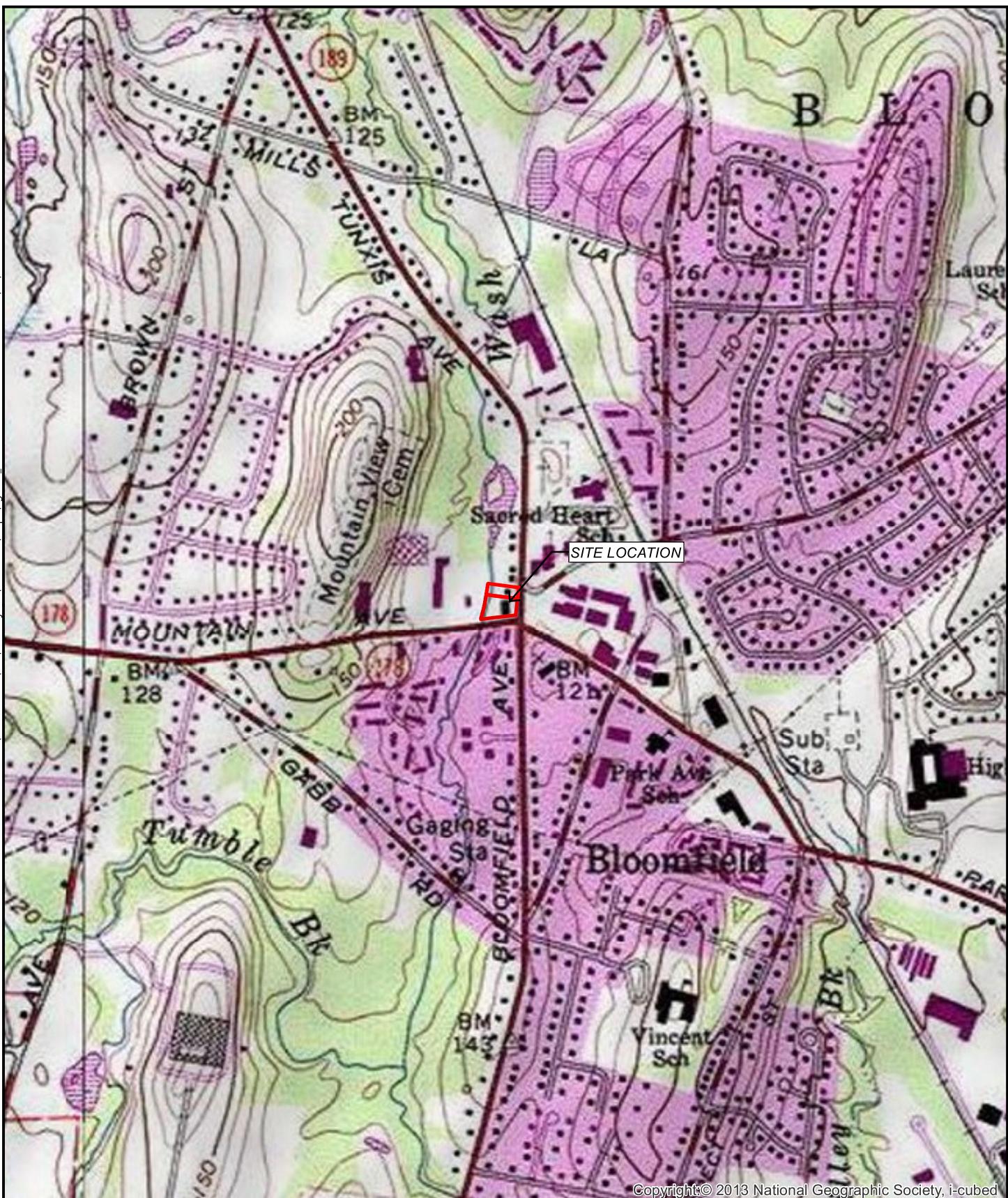
The following nonconformances were noted during the soil Data Quality Assessment (DQA) and Data Usability Evaluation (DUE) for the May 12, 2022, soil sample results as follows:

- The Continuing Calibration (CC) did not meet method specifications and was biased high for carbon disulfide in SB-1. The results for these constituents are likely biased low.
 - The data is still usable since the reported results for these constituents were not detected above the laboratory reporting limits, and the reporting limits are all well below the CTDEEP cleanup criteria.
- The Laboratory Control Sample (LCS) recovery was outside the control limits on the high side for carbon disulfide in SB-1. The results for these constituents are likely biased low.
 - The data is still usable since the reported results for these constituents were not detected above the laboratory reporting limits, and the reporting limits are all well below the CTDEEP cleanup criteria.
- Analytes that exceeded method limits from the laboratory “second source” standard in the Initial Calibration Verification (ICV) were reported to have no directional bias. The constituent results flagged with this note in the laboratory report are still usable since there was no directional bias. In addition, these flagged results were reported as not detected and are not COCs.

6. CONCLUSIONS

6.1 SOIL INVESTIGATION

Based upon the data collected, it appears that the soil at the Site generally consists of fill to a depth of 10 ftbg across both areas of investigation and likely across the property. The fill appears to be impacted with several PAH compounds at both areas of investigation and are indicative of incidental sources and not a “release”. The fill encountered within the footprint of the former temple (SB-2 and SB-3) and the former town hall area (SB-4) was intermixed with anthropogenic material that may be the source of the soil impacts observed. Specifically, the lead concentration above the RDEC in soil boring SB-3 and several PAHS above the RDEC and I/C DEC in SB-2.


The laboratory results for the fill material within AOC-1 indicate PAH compounds and lead concentrations that exceed their respective RSR criteria. Several other PAH compounds were at concentrations above background and below their respective RSR criteria.

The resulting concentrations of COCs do not pose a current significant environmental risk to human health or the environment based on their current condition below grade, mostly located beneath asphalt, or below 4-feet of material rendering the soil “inaccessible”. In general, the fill does not appear to contain VOCs or ETPH concentrations above background resulting in minimal risk of vapor intrusion or source of contamination to soils. Additional horizontal and vertical delineation of the impacted fill would be necessary to achieve compliance with the RSRs if entered into a CTDEEP program.

Special soil handling practices should be implemented for any disturbance to the current site conditions. All soil handling including re-use, re-location, or off-site disposal should be completed in accordance with State regulations and comply with the RSRs. Groundwater has not been evaluated as part of this limited Phase II ESI as there was no indication of a release from the AOC or REC. However, if groundwater handling is necessary, assessment of groundwater quality is recommended.

FIGURES

Copyright © 2013 National Geographic Society, i-cubed

 45 GLASTONBURY BLVD 1ST FL GLASTONBURY, CT 06033 860.400.5680	SITE LOCATION MAP PHASE II ENVIRONMENTAL SITE INVESTIGATION TOWN OF BLOOMFIELD, PROSSER LIBRARY 1 TUNXIS AVENUE BLOOMFIELD, CONNECTICUT	N 0 500 1,000 Feet	SCALE 1" = 1,000' DATE 6/7/2022 144.12571.00015 PROJ. NO.
			FIG. 1

TABLES

Table 1: Soil Sampling Table Prosser Library Bloomfield, CT	Client ID (Sample Depth)				SB-1 (0-2 feet)	SB-2 (0-2 Feet)	SB-3 (5-7 Feet)	SB-4 (2-4 Feet)	SB-5 (2-4 Feet)
	GA PMC	GB PMC	I/C DEC	R DEC	5/12/22	5/12/22	5/12/22	5/12/22	5/12/22
CT ETPH (mg/kg dry)									
ETPH	500	2,500	2,500	500	ND<56	270	ND<62	ND<58	ND<57
Metals by EPA 6010C (mg/kg dry)									
Arsenic	NE	NE	10	10	5.5	3.8	7.5	3.4	3
Barium	NE	NE	140000	4700	93	38	260	76	70
Cadmium	NE	NE	1000	34	ND<0.53	ND<0.57	ND<0.62	ND<0.57	ND<0.57
Chromium	NE	NE	NE	NE	31	22	15	17	16
Lead	NE	NE	1000	400	20	72	420	65	150
Mercury	NE	NE	610	20	ND<0.14	ND<0.14	0.2	ND<0.14	0.17
Selenium	NE	NE	10000	340	ND<2.6	ND<2.8	ND<3.1	ND<2.9	ND<2.8
Silver	NE	NE	10000	340	ND<2.1	ND<2.3	ND<2.5	ND<2.3	ND<2.3
Volatile Organic Compounds (VOCs) by EPA 8260C (ug/kg dry)									
VOCs	Varies	Varies	Varies	Varies	<ND	--	--	--	--
Semivolatile Organic Compounds (SVOCs) by EPA Method 8270D (ug/kg dry)									
2-Methyl Naphthalene	560	5,600	1,000,000	270,000	ND<220	ND<230	ND<250	ND<230	ND<230
Acenaphthene	8,400	84,000	2,500,000	1,000,000	ND<110	ND<110	ND<120	ND<120	ND<110
Acenaphthylene	8,400	84,000	2,500,000	1,000,000	230	1100	ND<120	250	150
Anthracene	40,000	400,000	2,500,000	1,000,000	ND<110	1000	ND<120	190	ND<110
Benzo(a)Anthracene	1,000	1,000	7,800	1,000	350	3100	210	670	270
Benzo(a)pyrene	1,000	1,000	1,000	1,000	510	3100	290	740	320
Benzo(b)fluoranthene	1,000	1,000	7,800	1,000	580	3300	450	820	380
Benzo(g,h,i)perylene	1,000	1,000	78,000	8,400	550	1900	250	480	210
Benzo(k)fluoranthene	1,000	1,000	78,000	8,400	250	1500	170	340	120
Chrysene	1,000	1,000	780,000	84,000	380	3000	430	760	310
Dibenz[a,h]anthracene	1,000	1,000	1,000	1,000	120	590	ND<120	150	ND<110
Fluoranthene	5,600	56,000	2,500,000	1,000,000	760	4500	800	1100	410
Fluorene	5,600	56,000	2,500,000	1,000,000	ND<110	220	ND<120	ND<120	ND<110
Indeno[1,2,3-cd]pyrene	1,000	1,000	7,800	10,000	360	1600	200	380	170
Phenanthrene	4,000	40,000	2,500,000	1,000,000	190	2300	700	520	210
Pyrene	4,000	40,000	2,500,000	1,000,000	700	5100	720	1100	430
Naphthalene	5,600	56,000	2,500,000	1,000,000	ND<110	210	ND<120	ND<120	ND<110

Notes:

CTDEEP - Connecticut Department of Energy & Environmental Protection
 GA-PMC - GA-Groundwater Area Pollutant Mobility Criteria
 I/C DEC - Industrial/Commercial Direct Exposure Criteria
 R DEC - Residential Direct Exposure Criteria
 CT ETPH - Connecticut Extractable Total Petroleum Hydrocarbons
 mg/kg - Milligrams per kilogram
 EPA - Environmental Protection Agency

-- Not analyzed for this parameter
 ug/kg - Micrograms per kilogram
 NE - Criteria not established for this parameter
 NA - Not applicable
 ND<53 - Not detected above the indicated reporting limit
 Black text value indicates a detection
 Shaded Cell = Exceedance

APPENDIX A

BORING LOGS

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Prosser Library Phase II			BORING NO.: SB-1		SHEET:		
		LOCATION: 1 Tunxis Ave, Bloomfield, CT			CONTRACTOR: Soil Testing, LLC				
		PROJ. NO: 144.12571.00015			FOREMAN: Mike Kennedy				
		CLIENT: Town of Bloomfield			SLR Personnel: MER				
		DATE: 5/12/2022			GROUND SURFACE ELEVATION: ±				
		EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)	
TYPE						DATE	TIME	Direct Push	
SIZE ID (IN.)							wet at approximately 6 feet	RIG MODEL:	
HMR. WT (LB.)		-	-	-	-				
HMR. FALL (IN.)		-	-	-	-			Geoprobe	
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)				PID (ppm)	STRATUM DESCRIPTION
0		0-2 Feet dug with shovel, air knife	55" 57"	0-4" black asphalt 4-6" black asphalt millings 6"-60" brown f SAND and Cobbles, odor of solvents/petroleum				396.50	Fill Sand and Gravel
1									
2									
3									
4									
5				0-6" red/brown f SAND, Silt, and fmc Gravel 6-41" brown/gray brown SILT, wet at approx. 6 feet 41-55" gray brown m SAND, some f Sand				0.00	
6									
7									
8									
9									
10				0-12" red/brown f SAND, some fmc Gravel 12-57" gray/brown fmc SAND				0.00	
11									
12									
13									
14									
15									
End of Boring (15')									
Remarks:				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE		PROPORTIONS	
				0-4 = VERY LOOSE 4-10 = LOOSE 10-30 = MEDIUM DENSE 30-50 = DENSE 50+ = VERY DENSE	0-2 = VERY SOFT 2-4 = SOFT 4-8 = MEDIUM 8-15 = STIFF 15-30 = VERY STIFF 30+ = HARD	C = ROCK CORE S = SPLIT SPOON UP = UNDISTURBED PISTON UT = UNDISTURBED THINWALL		trace = 1% - 10% little = 10% - 20% some = 20% - 35% and = 35% - 50%	

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Prosser Library Phase II			BORING NO.: SB-2		SHEET:		
		LOCATION: 1 Tunxis Ave, Bloomfield, CT			CONTRACTOR: Soil Testing, LLC				
		PROJ. NO: 144.12571.00015			FOREMAN: Mike Kennedy				
		CLIENT: Town of Bloomfield			SLR Personnel: MER				
		DATE: 5/12/2022			GROUND SURFACE ELEVATION: ±				
		EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)	
TYPE						DATE	TIME	Direct Push	
SIZE ID (IN.)							WATER DEPTH	RIG MODEL:	
HMR. WT (LB.)		-	-	-	-		none observed		
HMR. FALL (IN.)		-	-	-	-			Geoprobe	
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)				PID (ppm)	STRATUM DESCRIPTION
0		0-2 Feet dug with shovel, air knife	0-4" black asphalt 4-5" dark brown fmc SAND, little Silt, little fmc Gravel, trace Asphalt, trace Woody Debris End of Boring (3 feet)					0.00	
1									
2									
3									
4									
5									
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
Remarks:				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE	PROPORTIONS		
				0-4 = VERY LOOSE 4-10 = LOOSE 10-30 = MEDIUM DENSE 30-50 = DENSE 50+ = VERY DENSE	0-2 = VERY SOFT 2-4 = SOFT 4-8 = MEDIUM 8-15 = STIFF 15-30 = VERY STIFF 30+ = HARD	C = ROCK CORE S = SPLIT SPOON UP = UNDISTURBED PISTON UT = UNDISTURBED THINWALL	trace = 1% - 10% little = 10% - 20% some = 20% - 35% and = 35% - 50%		

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Prosser Library Phase II			BORING NO.: SB-3		SHEET:				
		LOCATION: 1 Tunxis Ave, Bloomfield, CT			CONTRACTOR: Soil Testing, LLC						
		PROJ. NO: 144.12571.00015			FOREMAN: Mike Kennedy						
		CLIENT: Town of Bloomfield			SLR Personnel: MER						
		DATE: 5/12/2022			GROUND SURFACE ELEVATION: ±						
		EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)		TYPE OF RIG:	
TYPE						DATE	TIME	Direct Push			
SIZE ID (IN.)							WATER DEPTH	RIG MODEL:			
HMR. WT (LB.)		-	-	-	-		Approximately 10 feet				
HMR. FALL (IN.)		-	-	-	-			Geoprobe			
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)				PID (ppm)	STRATUM DESCRIPTION		
0			dug with shovel, air knife	0-60" dark brown fm SAND, little Gravel, some black odorous asphalt-like substance, little brick, little cobbles moist soil				0.00	Fill		
1											
2											
3											
4											
5		5-7 Feet		43"	0-6" brown f SAND, little crushed brick 6-12" red/brown/black COAL ASH, Coal, and Sand 12-43" dark brown f SAND and silt. Wet at approximately 10 feet					0.00	
6											
7											
8											
9											
10					59"	0-24" brown f SAND and Silt 24-44" green brown f SAND 44-55" brown m SAND, some f Sand 55-59" red/brown SILT and Clay				0.00	
11											
12											
13											
14											
15				End of Boring (15 Feet)							
Remarks:				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE		PROPORTIONS			
				0-4 = VERY LOOSE 4-10 = LOOSE 10-30 = MEDIUM DENSE 30-50 = DENSE 50+ = VERY DENSE	0-2 = VERY SOFT 2-4 = SOFT 4-8 = MEDIUM 8-15 = STIFF 15-30 = VERY STIFF 30+ = HARD	C = ROCK CORE S = SPLIT SPOON UP = UNDISTURBED PISTON UT = UNDISTURBED THINWALL		trace = 1% - 10% little = 10% - 20% some = 20% - 35% and = 35% - 50%			

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Prosser Library Phase II			BORING NO.: SB-4		SHEET:				
		LOCATION: 1 Tunxis Ave, Bloomfield, CT			CONTRACTOR: Soil Testing, LLC						
		PROJ. NO: 144.12571.00015			FOREMAN: Mike Kennedy						
		CLIENT: Town of Bloomfield			SLR Personnel: MER						
		DATE: 5/12/2022			GROUND SURFACE ELEVATION: ±						
		EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)		TYPE OF RIG:	
TYPE						DATE	TIME	Direct Push			
SIZE ID (IN.)							WATER DEPTH	RIG MODEL:			
HMR. WT (LB.)		-	-	-	-		none observed				
HMR. FALL (IN.)		-	-	-	-			Geoprobe			
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)				PID (ppm)	STRATUM DESCRIPTION		
0			dug with shovel, air knife	0-60" brown fm SAND, some Brick, little Coal 0-15" red/brown SILT, little c Gravel 15-30" dark brown SILT 30-33" BRICK and Crushed Concrete End of Boring (9 Feet)				0.00			
1											
2											
3											
4											
5										0.00	
6											
7											
8											
9											
10											
11											
12											
13											
14											
15											
Remarks:				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE	PROPORTIONS				
				0-4 = VERY LOOSE 4-10 = LOOSE 10-30 = MEDIUM DENSE 30-50 = DENSE 50+ = VERY DENSE	0-2 = VERY SOFT 2-4 = SOFT 4-8 = MEDIUM 8-15 = STIFF 15-30 = VERY STIFF 30+ = HARD	C = ROCK CORE S = SPLIT SPOON UP = UNDISTURBED PISTON UT = UNDISTURBED THINWALL	trace = 1% - 10% little = 10% - 20% some = 20% - 35% and = 35% - 50%				

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Prosser Library Phase II			BORING NO.: SB-5		SHEET:		
		LOCATION: 1 Tunxis Ave, Bloomfield, CT			CONTRACTOR: Soil Testing, LLC				
		PROJ. NO: 144.12571.00015			FOREMAN: Mike Kennedy				
		CLIENT: Town of Bloomfield			SLR Personnel: MER				
		DATE: 5/12/2022			GROUND SURFACE ELEVATION: ±				
		EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)	
TYPE						DATE	TIME	Direct Push	
SIZE ID (IN.)							WATER DEPTH	RIG MODEL:	
HMR. WT (LB.)		-	-	-	-		none observed		
HMR. FALL (IN.)		-	-	-	-			Geoprobe	
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)				PID (ppm)	STRATUM DESCRIPTION
0			dug with shovel, air knife	0-60" brown f SAND, little Roots and Organic Matter, little Cobbles				0.00	Fill
1									
2									
3									
4									
5								0.00	
6									
7									
8									
9									
10									
11									
12									
13									
14									
15									
End of Boring (15 Feet)									
Remarks: DUP-001 sample taken from this location t 2-4 feet				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE		PROPORTIONS	
				0-4 = VERY LOOSE	0-2 = VERY SOFT	C = ROCK CORE		trace = 1% - 10%	
				4-10 = LOOSE	2-4 = SOFT	S = SPLIT SPOON		little = 10% - 20%	
				10-30 = MEDIUM DENSE	4-8 = MEDIUM	UP = UNDISTURBED PISTON		some = 20% - 35%	
				30-50 = DENSE	8-15 = STIFF	UT = UNDISTURBED THINWALL		and = 35% - 50%	
				50+ = VERY DENSE	15-30 = VERY STIFF				
					30+ = HARD				

APPENDIX B

LABORATORY ANALYTICAL REPORTS

80 Luples Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
e-mail: cet1@cetlabs.com

Client: Mr. Matthew Rose
SLR Incorporated
45 Glastonbury Blvd
Glastonbury, CT 06033

Analytical Report

CET# 2050413

Report Date: May 24, 2022
Project: Prosser Library, Bloomfield
Project Number: 144.12571.00015

Connecticut Laboratory Certificate: PH 0116
Massachusetts Laboratory Certificate: M-CT903
Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982
Pennsylvania Laboratory Certificate: 68-02927

CET # : 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

SAMPLE SUMMARY

The sample(s) were received at 4.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
SB-1 0-2ft	2050413-01	Soil	5/12/2022 8:45	05/17/2022
SB-2 0-2ft	2050413-02	Soil	5/12/2022 10:00	05/17/2022
SB-3 5-7ft	2050413-03	Soil	5/12/2022 10:45	05/17/2022
SB-4 2-4t	2050413-04	Soil	5/12/2022 12:30	05/17/2022
SB-5 2-4t	2050413-05	Soil	5/12/2022 13:00	05/17/2022
Dup-001	2050413-06	Soil	5/12/2022	05/17/2022

Analyst: Mercury [EPA 7471B]

Analyst: EAS

Matrix: Soil

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2050413-01	SB-1 0-2ft	ND	0.14	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 14:57	
2050413-02	SB-2 0-2ft	ND	0.14	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 15:11	
2050413-03	SB-3 5-7ft	0.20	0.16	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 15:13	
2050413-04	SB-4 2-4t	ND	0.14	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 15:15	
2050413-05	SB-5 2-4t	0.17	0.14	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 15:17	
2050413-06	Dup-001	0.20	0.14	mg/kg dry	1	B2E1808	05/18/2022	05/18/2022 15:20	

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-1 0-2ft**Lab ID: 2050413-01****Total Metals****Analyst: SS****Method: EPA 6010C****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	20	2.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Selenium	ND	2.6	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Cadmium	ND	0.53	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Chromium	31	2.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Arsenic	5.5	1.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Barium	93	2.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	
Silver	ND	2.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:02	

Conn. Extractable TPH**Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	56	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 18:24	
Surrogate: Octacosane	100 %	50 - 150			B2E1814	05/18/2022	05/18/2022 18:24	

Semivolatile Organics**Analyst: TWF****Method: EPA 8270D****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
2-Methyl Naphthalene	ND	220	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Acenaphthylene	230	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Acenaphthene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Fluorene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Phenanthrene	190	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Anthracene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Fluoranthene	760	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Pyrene	700	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Benzo[a]anthracene	350	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Chrysene	380	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-1 0-2ft**Lab ID: 2050413-01****Semivolatile Organics****Analyst: TWF****Method: EPA 8270D****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzo[b]fluoranthene	580	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Benzo[k]fluoranthene	250	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Benzo[a]pyrene	510	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Indeno[1,2,3-cd]pyrene	360	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Dibenz[a,h]anthracene	120	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Benzo[g,h,i]perylene	550	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 16:41	
Surrogate: Nitrobenzene-d5	45.5 %	30 - 130		B2E1902	05/19/2022	05/23/2022 16:41		
Surrogate: 2-Fluorobiphenyl	49.0 %	30 - 130		B2E1902	05/19/2022	05/23/2022 16:41		
Surrogate: Terphenyl-d14	55.5 %	30 - 130		B2E1902	05/19/2022	05/23/2022 16:41		

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Dichlorodifluoromethane	ND	9.9	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	*I
Chloromethane	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Vinyl Chloride	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Bromomethane	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Chloroethane	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Trichlorofluoromethane	ND	26	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Acetone	ND	99	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	*I
Acrylonitrile	ND	5.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Trichlorotrifluoroethane	ND	26	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1-Dichloroethene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Methylene Chloride	ND	40	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Carbon Disulfide	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
trans-1,2-Dichloroethene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1-Dichloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
2-Butanone (MEK)	ND	17	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	*I
2,2-Dichloropropane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
cis-1,2-Dichloroethene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Bromochloromethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Chloroform	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Tetrahydrofuran	ND	17	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	*I
1,1,1-Trichloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	

Complete Environmental Testing, Inc.

Client Sample ID SB-1 0-2ft

Lab ID: 2050413-01

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Carbon Tetrachloride	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1-Dichloropropene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Benzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2-Dichloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Trichloroethene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2-Dichloropropane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Dibromomethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Bromodichloromethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Methyl Isobutyl Ketone	ND	17	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
cis-1,3-Dichloropropene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Toluene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
trans-1,3-Dichloropropene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
2-Hexanone	ND	17	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1,2-Trichloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Tetrachloroethene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,3-Dichloropropane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Dibromochloromethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2-Dibromoethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
trans-1,4-Dichloro-2-Butene	ND	17	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Chlorobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1,1,2-Tetrachloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Ethylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
m+p Xylenes	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
o-Xylene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Styrene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Bromoform	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Isopropylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,1,2,2-Tetrachloroethane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
Bromobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2,3-Trichloropropane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
n-Propylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
2-Chlorotoluene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
4-Chlorotoluene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,3,5-Trimethylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
tert-Butylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2,4-Trimethylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
sec-Butylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,3-Dichlorobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
4-Isopropyltoluene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,4-Dichlorobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	
1,2-Dichlorobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17	

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-1 0-2ft

Lab ID: 2050413-01

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
n-Butylbenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
1,2-Dibromo-3-Chloropropane	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
1,2,4-Trichlorobenzene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
Hexachlorobutadiene	ND	3.3	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
Naphthalene	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
1,2,3-Trichlorobenzene	ND	6.6	1.18	EPA 5035A-L	B2E1910	05/18/2022	05/18/2022 22:17		
<i>Surrogate: 1,2-Dichloroethane-d4</i>	95.9 %		70 - 130		B2E1910	05/18/2022	05/18/2022 22:17		
<i>Surrogate: Toluene-d8</i>	100 %		70 - 130		B2E1910	05/18/2022	05/18/2022 22:17		
<i>Surrogate: 4-Bromofluorobenzene</i>	99.8 %		70 - 130		B2E1910	05/18/2022	05/18/2022 22:17		

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-2 0-2ft**Lab ID: 2050413-02****Total Metals****Analyst: SS****Method: EPA 6010C****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	72	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Selenium	ND	2.8	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Cadmium	ND	0.57	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Chromium	22	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Arsenic	3.8	1.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Barium	38	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	
Silver	ND	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:15	

Conn. Extractable TPH**Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	270	57	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 19:48	I, R
<i>Surrogate: Octacosane</i>		113 %	50 - 150		B2E1814	05/18/2022	05/18/2022 19:48	
1 C18-C36 may be PNA Related								
R C14-C36 unknown								

Semivolatile Organics**Analyst: TWF****Method: EPA 8270D****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	210	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
2-Methyl Naphthalene	ND	230	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Acenaphthylene	1100	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Acenaphthene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Fluorene	220	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Phenanthrene	2300	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Anthracene	1000	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Fluoranthene	4500	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Pyrene	5100	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Benzo[a]anthracene	3100	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	
Chrysene	3000	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06	

Complete Environmental Testing, Inc.

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-2 0-2ft

Lab ID: 2050413-02

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
Benzo[b]fluoranthene	3300	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Benzo[k]fluoranthene	1500	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Benzo[a]pyrene	3100	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Indeno[1,2,3-cd]pyrene	1600	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Dibenz[a,h]anthracene	590	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Benzo[g,h,i]perylene	1900	110	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:06		
Surrogate: Nitrobenzene-d5	46.6 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:06		
Surrogate: 2-Fluorobiphenyl	50.2 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:06		
Surrogate: Terphenyl-d14	54.9 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:06		

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-3 5-7ft**Lab ID: 2050413-03****Total Metals****Analyst: SS****Method: EPA 6010C****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	420	2.5	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Selenium	ND	3.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Cadmium	ND	0.62	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Chromium	15	2.5	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Arsenic	7.5	1.2	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Barium	260	2.5	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	
Silver	ND	2.5	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:19	

Conn. Extractable TPH**Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	62	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 20:52	
Surrogate: Octacosane	95.9 %	50 - 150			B2E1814	05/18/2022	05/18/2022 20:52	

Semivolatile Organics**Analyst: TWF****Method: EPA 8270D****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
2-Methyl Naphthalene	ND	250	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Acenaphthylene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Acenaphthene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Fluorene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Phenanthrene	700	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Anthracene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Fluoranthene	800	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Pyrene	720	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Benzo[a]anthracene	210	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	
Chrysene	430	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31	

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-3 5-7ft

Lab ID: 2050413-03

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
Benzo[b]fluoranthene	450	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Benzo[k]fluoranthene	170	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Benzo[a]pyrene	290	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Indeno[1,2,3-cd]pyrene	200	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Dibenz[a,h]anthracene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Benzo[g,h,i]perylene	250	120	1	EPA 3545A	B2E1902	05/19/2022	05/23/2022 17:31		
Surrogate: Nitrobenzene-d5	43.9 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:31		
Surrogate: 2-Fluorobiphenyl	45.8 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:31		
Surrogate: Terphenyl-d14	52.8 %	30 - 130			B2E1902	05/19/2022	05/23/2022 17:31		

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-4 2-4t

Lab ID: 2050413-04

Total Metals

Analyst: SS

Method: EPA 6010C

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	65	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Selenium	ND	2.9	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Cadmium	ND	0.57	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Chromium	17	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Arsenic	3.4	1.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Barium	76	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	
Silver	ND	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:23	

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	58	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 21:13	
Surrogate: Octacosane	97.6 %	50 - 150			B2E1814	05/18/2022	05/18/2022 21:13	

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
2-Methyl Naphthalene	ND	230	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Acenaphthylene	250	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Acenaphthene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Fluorene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Phenanthrene	520	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Anthracene	190	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Fluoranthene	1100	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Pyrene	1100	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Benzo[a]anthracene	670	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	
Chrysene	760	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03	

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-4 2-4t

Lab ID: 2050413-04

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
Benzo[b]fluoranthene	820	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Benzo[k]fluoranthene	340	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Benzo[a]pyrene	740	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Indeno[1,2,3-cd]pyrene	380	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Dibenz[a,h]anthracene	150	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Benzo[g,h,i]perylene	480	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:03		
Surrogate: Nitrobenzene-d5	55.2 %	30 - 130			B2E1902	05/19/2022	05/20/2022 19:03		
Surrogate: 2-Fluorobiphenyl	62.3 %	30 - 130			B2E1902	05/19/2022	05/20/2022 19:03		
Surrogate: Terphenyl-d14	89.7 %	30 - 130			B2E1902	05/19/2022	05/20/2022 19:03		

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-5 2-4t

Lab ID: 2050413-05

Total Metals

Analyst: SS

Method: EPA 6010C

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	150	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Selenium	ND	2.8	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Cadmium	ND	0.57	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Chromium	16	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Arsenic	3.0	1.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Barium	70	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	
Silver	ND	2.3	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:27	

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Soil

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	57	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 21:34	
Surrogate: Octacosane	99.9 %	50 - 150			B2E1814	05/18/2022	05/18/2022 21:34	

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
2-Methyl Naphthalene	ND	230	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Acenaphthylene	150	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Acenaphthene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Fluorene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Phenanthrene	210	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Anthracene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Fluoranthene	410	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Pyrene	430	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Benzo[a]anthracene	270	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	
Chrysene	310	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28	

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID SB-5 2-4t

Lab ID: 2050413-05

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyst	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
Benzo[b]fluoranthene	380	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
Benzo[k]fluoranthene	120	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
Benzo[a]pyrene	320	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
Indeno[1,2,3-cd]pyrene	170	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
Dibenz[a,h]anthracene	ND	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
Benzo[g,h,i]perylene	210	110	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:28		
<i>Surrogate: Nitrobenzene-d5</i>	50.2 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:28		
<i>Surrogate: 2-Fluorobiphenyl</i>	61.2 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:28		
<i>Surrogate: Terphenyl-d14</i>	96.0 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:28		

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID Dup-001**Lab ID: 2050413-06****Total Metals****Analyst: SS****Method: EPA 6010C****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Lead	160	2.2	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Selenium	ND	2.8	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Cadmium	ND	0.55	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Chromium	14	2.2	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Arsenic	2.6	1.1	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Barium	61	2.2	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	
Silver	ND	2.2	1	EPA 3051A	B2E1818	05/18/2022	05/18/2022 16:31	

Conn. Extractable TPH**Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	58	1	EPA 3550C	B2E1814	05/18/2022	05/18/2022 21:55	
Surrogate: Octacosane	103 %	50 - 150			B2E1814	05/18/2022	05/18/2022 21:55	

Semivolatile Organics**Analyst: TWF****Method: EPA 8270D****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Naphthalene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
2-Methyl Naphthalene	ND	230	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Acenaphthylene	150	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Acenaphthene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Fluorene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Phenanthrene	170	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Anthracene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Fluoranthene	410	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Pyrene	450	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Benzo[a]anthracene	280	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	
Chrysene	320	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53	

Complete Environmental Testing, Inc.

80 Lupes Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Client Sample ID Dup-001

Lab ID: 2050413-06

Semivolatile Organics

Analyst: TWF

Method: EPA 8270D

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Analyzed	Date/Time	Notes
Benzo[b]fluoranthene	350	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
Benzo[k]fluoranthene	140	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
Benzo[a]pyrene	320	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
Indeno[1,2,3-cd]pyrene	170	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
Dibenz[a,h]anthracene	ND	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
Benzo[g,h,i]perylene	190	120	1	EPA 3545A	B2E1902	05/19/2022	05/20/2022 19:53		
<i>Surrogate: Nitrobenzene-d5</i>	58.7 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:53		
<i>Surrogate: 2-Fluorobiphenyl</i>	66.0 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:53		
<i>Surrogate: Terphenyl-d14</i>	96.1 %	<i>30 - 130</i>			B2E1902	05/19/2022	05/20/2022 19:53		

CET # : 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

QUALITY CONTROL SECTION

Batch B2E1808 - EPA 7471B

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2E1808-BLK1)									Prepared: 5/18/22 Analyzed: 5/18/22
Mercury	ND	0.13							
LCS (B2E1808-BS1)									Prepared: 5/18/22 Analyzed: 5/18/22
Mercury	1.26	0.13	1.250		101	80 - 120			
Duplicate (B2E1808-DUP1)				Source: 2050413-01					Prepared: 5/18/22 Analyzed: 5/18/22
Mercury	ND	0.13		ND				20	
Matrix Spike (B2E1808-MS1)				Source: 2050413-01					Prepared: 5/18/22 Analyzed: 5/18/22
Mercury	1.36	0.14	1.400	ND	97.4	75 - 125			
Matrix Spike Dup (B2E1808-MSD1)				Source: 2050413-01					Prepared: 5/18/22 Analyzed: 5/18/22
Mercury	1.35	0.14	1.400	ND	96.4	75 - 125	1.03	20	

CET #: 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Batch B2E1814 - CT-ETPH

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2E1814-BLK1)									
ETPH	ND	50				Prepared: 5/18/22 Analyzed: 5/18/22			
<i>Surrogate: Octacosane</i>					104	50 - 150			
LCS (B2E1814-BS1)									
ETPH	1460	50	1,500.000		97.5	60 - 120			
<i>Surrogate: Octacosane</i>					103	50 - 150			
Duplicate (B2E1814-DUP1)									
ETPH	ND	55		ND		Prepared: 5/18/22 Analyzed: 5/18/22		30	
<i>Surrogate: Octacosane</i>					104	50 - 150			
Matrix Spike (B2E1814-MS1)									
ETPH	1400	56	1,673.307	ND	83.7	50 - 150			
<i>Surrogate: Octacosane</i>					106	50 - 150			
Matrix Spike Dup (B2E1814-MSD1)									
ETPH	1460	56	1,678.322	ND	87.3	50 - 150	4.47	30	
<i>Surrogate: Octacosane</i>					103	50 - 150			

CET # : 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Batch B2E1818 - EPA 6010C

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
---------	-------------------	---------------	----------------	------------------	-------	-----------------	-----	--------------	-------

Blank (B2E1818-BLK1)

Prepared: 5/18/22 Analyzed: 5/18/22

Lead	ND	2.0							
Selenium	ND	2.5							
Cadmium	ND	0.50							
Chromium	ND	2.0							
Arsenic	ND	1.0							
Barium	ND	2.0							
Silver	ND	2.0							

LCS (B2E1818-BS1)

Prepared: 5/18/22 Analyzed: 5/18/22

Lead	24.4	1.9	24.038	102	80 - 120				
Selenium	47.5	2.4	48.077	98.8	80 - 120				
Cadmium	25.5	0.48	24.038	106	80 - 120				
Chromium	25.9	1.9	24.038	108	80 - 120				
Arsenic	24.3	0.96	24.038	101	80 - 120				
Barium	26.0	1.9	24.038	108	80 - 120				
Silver	4.64	1.9	4.808	96.6	80 - 120				

CET # : 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

Batch B2E1902 - EPA 8270D

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2E1902-BLK1)									
Naphthalene	ND	100							
2-Methyl Naphthalene	ND	200							
Acenaphthylene	ND	100							
Acenaphthene	ND	100							
Fluorene	ND	100							
Phenanthrene	ND	100							
Anthracene	ND	100							
Fluoranthene	ND	100							
Pyrene	ND	100							
Benzo[a]anthracene	ND	100							
Chrysene	ND	100							
Benzo[b]fluoranthene	ND	100							
Benzo[k]fluoranthene	ND	100							
Benzo[a]pyrene	ND	100							
Indeno[1,2,3-cd]pyrene	ND	100							
Dibenz[a,h]anthracene	ND	100							
Benzo[g,h,i]perylene	ND	100							
<i>Surrogate: Nitrobenzene-d5</i>					37.5	30 - 130			
<i>Surrogate: 2-Fluorobiphenyl</i>					39.8	30 - 130			
<i>Surrogate: Terphenyl-d14</i>					60.0	30 - 130			
LCS (B2E1902-BS1)									
Naphthalene	3020	100	4,000.000		75.6	40 - 140			
2-Methyl Naphthalene	3350	200	4,000.000		83.8	40 - 140			
Acenaphthylene	3270	100	4,000.000		81.7	40 - 140			
Acenaphthene	3490	100	4,000.000		87.3	40 - 140			
Fluorene	3670	100	4,000.000		91.7	40 - 140			
Phenanthrene	3690	100	4,000.000		92.2	40 - 140			
Anthracene	3680	100	4,000.000		92.1	40 - 140			
Fluoranthene	3490	100	4,000.000		87.2	40 - 140			
Pyrene	3450	100	4,000.000		86.2	40 - 140			
Benzo[a]anthracene	3810	100	4,000.000		95.2	40 - 140			
Chrysene	3770	100	4,000.000		94.3	40 - 140			
Benzo[b]fluoranthene	3730	100	4,000.000		93.3	40 - 140			
Benzo[k]fluoranthene	3860	100	4,000.000		96.6	40 - 140			
Benzo[a]pyrene	3830	100	4,000.000		95.7	40 - 140			
Indeno[1,2,3-cd]pyrene	4060	100	4,000.000		102	40 - 140			
Dibenz[a,h]anthracene	3920	100	4,000.000		98.0	40 - 140			
Benzo[g,h,i]perylene	3900	100	4,000.000		97.5	40 - 140			
<i>Surrogate: Nitrobenzene-d5</i>					53.3	30 - 130			
<i>Surrogate: 2-Fluorobiphenyl</i>					50.9	30 - 130			
<i>Surrogate: Terphenyl-d14</i>					63.9	30 - 130			

Batch B2E1910 - EPA 8260C

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2E1910-BLK1)									Prepared: 5/18/22 Analyzed: 5/18/22
Dichlorodifluoromethane	ND	7.5							
Chloromethane	ND	5.0							
Vinyl Chloride	ND	2.5							
Bromomethane	ND	5.0							
Chloroethane	ND	5.0							
Trichlorofluoromethane	ND	20							
Acetone	ND	75							
Acrylonitrile	ND	4.0							
Trichlorotrifluoroethane	ND	20							
1,1-Dichloroethene	ND	2.5							
Methylene Chloride	41.4	30							B
Carbon Disulfide	ND	5.0							
Methyl-t-Butyl Ether (MTBE)	ND	2.5							
trans-1,2-Dichloroethene	ND	2.5							
1,1-Dichloroethane	ND	2.5							
2-Butanone (MEK)	ND	13							
2,2-Dichloropropane	ND	2.5							
cis-1,2-Dichloroethene	ND	2.5							
Bromochloromethane	ND	2.5							
Chloroform	ND	2.5							
Tetrahydrofuran	ND	13							
1,1,1-Trichloroethane	ND	2.5							
Carbon Tetrachloride	ND	2.5							
1,1-Dichloropropene	ND	2.5							
Benzene	ND	2.5							
1,2-Dichloroethane	ND	2.5							
Trichloroethene	ND	2.5							
1,2-Dichloropropane	ND	2.5							
Dibromomethane	ND	2.5							
Bromodichloromethane	ND	2.5							
Methyl Isobutyl Ketone	ND	13							
cis-1,3-Dichloropropene	ND	2.5							
Toluene	ND	2.5							
trans-1,3-Dichloropropene	ND	2.5							
2-Hexanone	ND	13							
1,1,2-Trichloroethane	ND	2.5							
Tetrachloroethene	ND	2.5							
1,3-Dichloropropane	ND	2.5							
Dibromochloromethane	ND	2.5							
1,2-Dibromoethane	ND	2.5							
trans-1,4-Dichloro-2-Butene	ND	13							
Chlorobenzene	ND	2.5							
1,1,1,2-Tetrachloroethane	ND	2.5							
Ethylbenzene	ND	2.5							
m+p Xylenes	ND	5.0							
o-Xylene	ND	2.5							
Styrene	ND	2.5							
Bromoform	ND	2.5							
Isopropylbenzene	ND	2.5							
1,1,2,2-Tetrachloroethane	ND	2.5							
Bromobenzene	ND	2.5							
1,2,3-Trichloropropane	ND	2.5							

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2E1910-BLK1) - Continued									Prepared: 5/18/22 Analyzed: 5/18/22
n-Propylbenzene	ND	2.5							
2-Chlorotoluene	ND	2.5							
4-Chlorotoluene	ND	2.5							
1,3,5-Trimethylbenzene	ND	2.5							
tert-Butylbenzene	ND	2.5							
1,2,4-Trimethylbenzene	ND	2.5							
sec-Butylbenzene	ND	2.5							
1,3-Dichlorobenzene	ND	2.5							
4-Isopropyltoluene	ND	2.5							
1,4-Dichlorobenzene	ND	2.5							
1,2-Dichlorobenzene	ND	2.5							
n-Butylbenzene	ND	2.5							
1,2-Dibromo-3-Chloropropane	ND	2.5							
1,2,4-Trichlorobenzene	ND	2.5							
Hexachlorobutadiene	ND	2.5							
Naphthalene	ND	5.0							
1,2,3-Trichlorobenzene	ND	5.0							
<i>Surrogate: 1,2-Dichloroethane-d4</i>					100	70 - 130			
<i>Surrogate: Toluene-d8</i>					101	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					102	70 - 130			
LCS (B2E1910-BS1)									Prepared: 5/18/22 Analyzed: 5/18/22
Dichlorodifluoromethane	49.4	7.5	50.000		98.7	70 - 130			
Chloromethane	44.7	5.0	50.000		89.4	70 - 130			
Vinyl Chloride	45.9	2.5	50.000		91.8	70 - 130			
Bromomethane	50.7	5.0	50.000		101	70 - 130			
Chloroethane	49.7	5.0	50.000		99.4	70 - 130			
Trichlorofluoromethane	43.7	20	50.000		87.3	70 - 130			
Acetone	105	75	100.000		105	70 - 130			
Acrylonitrile	55.8	4.0	50.000		112	70 - 130			
Trichlorotrifluoroethane	56.2	20	50.000		112	70 - 130			
1,1-Dichloroethene	58.5	2.5	50.000		117	70 - 130			
Methylene Chloride	58.1	30	50.000		116	70 - 130			
Carbon Disulfide	65.8	5.0	50.000		132	70 - 130			H
Methyl-t-Butyl Ether (MTBE)	50.0	2.5	50.000		100	70 - 130			
trans-1,2-Dichloroethene	46.7	2.5	50.000		93.4	70 - 130			
1,1-Dichloroethane	48.2	2.5	50.000		96.3	70 - 130			
2-Butanone (MEK)	112	13	100.000		112	70 - 130			
2,2-Dichloropropane	48.4	2.5	50.000		96.8	70 - 130			
cis-1,2-Dichloroethene	48.8	2.5	50.000		97.5	70 - 130			
Bromochloromethane	48.6	2.5	50.000		97.3	70 - 130			
Chloroform	47.2	2.5	50.000		94.5	70 - 130			
Tetrahydrofuran	55.8	13	50.000		112	70 - 130			
1,1,1-Trichloroethane	49.6	2.5	50.000		99.2	70 - 130			
Carbon Tetrachloride	49.5	2.5	50.000		98.9	70 - 130			
1,1-Dichloropropene	50.0	2.5	50.000		99.9	70 - 130			
Benzene	48.0	2.5	50.000		96.0	70 - 130			
1,2-Dichloroethane	46.6	2.5	50.000		93.3	70 - 130			
Trichloroethene	49.1	2.5	50.000		98.2	70 - 130			
1,2-Dichloropropane	48.6	2.5	50.000		97.3	70 - 130			
Dibromomethane	49.3	2.5	50.000		98.6	70 - 130			
Bromodichloromethane	49.7	2.5	50.000		99.5	70 - 130			
Methyl Isobutyl Ketone	103	13	100.000		103	70 - 130			

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B2E1910-BS1) - Continued								Prepared: 5/18/22 Analyzed: 5/18/22	
cis-1,3-Dichloropropene	51.3	2.5	50.000		103	70 - 130			
Toluene	45.6	2.5	50.000		91.2	70 - 130			
trans-1,3-Dichloropropene	50.3	2.5	50.000		101	70 - 130			
2-Hexanone	102	13	100.000		102	70 - 130			
1,1,2-Trichloroethane	48.7	2.5	50.000		97.4	70 - 130			
Tetrachloroethene	47.7	2.5	50.000		95.4	70 - 130			
1,3-Dichloropropane	48.5	2.5	50.000		97.0	70 - 130			
Dibromochloromethane	50.6	2.5	50.000		101	70 - 130			
1,2-Dibromoethane	49.4	2.5	50.000		98.7	70 - 130			
trans-1,4-Dichloro-2-Butene	52.1	13	50.000		104	70 - 130			
Chlorobenzene	47.1	2.5	50.000		94.2	70 - 130			
1,1,1,2-Tetrachloroethane	49.6	2.5	50.000		99.2	70 - 130			
Ethylbenzene	47.0	2.5	50.000		93.9	70 - 130			
m+p Xylenes	95.5	5.0	100.000		95.5	70 - 130			
o-Xylene	49.6	2.5	50.000		99.1	70 - 130			
Styrene	49.8	2.5	50.000		99.5	70 - 130			
Bromoform	53.0	2.5	50.000		106	70 - 130			
Isopropylbenzene	49.6	2.5	50.000		99.3	70 - 130			
1,1,2,2-Tetrachloroethane	47.6	2.5	50.000		95.2	70 - 130			
Bromobenzene	47.4	2.5	50.000		94.9	70 - 130			
1,2,3-Trichloropropane	51.2	2.5	50.000		102	70 - 130			
n-Propylbenzene	47.8	2.5	50.000		95.5	70 - 130			
2-Chlorotoluene	47.5	2.5	50.000		95.0	70 - 130			
4-Chlorotoluene	48.1	2.5	50.000		96.1	70 - 130			
1,3,5-Trimethylbenzene	48.6	2.5	50.000		97.2	70 - 130			
tert-Butylbenzene	49.5	2.5	50.000		99.0	70 - 130			
1,2,4-Trimethylbenzene	48.3	2.5	50.000		96.7	70 - 130			
sec-Butylbenzene	48.8	2.5	50.000		97.5	70 - 130			
1,3-Dichlorobenzene	46.9	2.5	50.000		93.8	70 - 130			
4-Isopropyltoluene	49.5	2.5	50.000		99.1	70 - 130			
1,4-Dichlorobenzene	46.7	2.5	50.000		93.4	70 - 130			
1,2-Dichlorobenzene	48.0	2.5	50.000		95.9	70 - 130			
n-Butylbenzene	48.6	2.5	50.000		97.2	70 - 130			
1,2-Dibromo-3-Chloropropane	52.7	2.5	50.000		105	70 - 130			
1,2,4-Trichlorobenzene	48.7	2.5	50.000		97.3	70 - 130			
Hexachlorobutadiene	46.3	2.5	50.000		92.5	70 - 130			
Naphthalene	49.7	5.0	50.000		99.4	70 - 130			
1,2,3-Trichlorobenzene	48.8	5.0	50.000		97.5	70 - 130			
<i>Surrogate: 1,2-Dichloroethane-d4</i>					100	70 - 130			
<i>Surrogate: Toluene-d8</i>					99.9	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					100	70 - 130			

CET # : 2050413

Project: Prosser Library, Bloomfield

Project Number: 144.12571.00015

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

David Ditta
Laboratory Director

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

Reporting Limit (RL) is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

80 Luples Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
email: cetl@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention time, calculate relative response, and quantify analytes of interest.
Surrogate Recovery	The % recovery for non-target organic compounds that are spiked into all samples. Used to determine method performance.
Continuing Calibration Batch	An analytical standard analyzed with each set of samples to verify initial calibration of the system. Samples that are analyzed together with the same method, sequence and lot of reagents within the same time period.
ND	Not detected at or above the specified reporting limit.
RL	RL is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high concentration of target compounds.
Duplicate Result	Result from the duplicate analysis of a sample.
Spike Level	Amount of analyte found in a sample.
Matrix Spike Result	Amount of analyte added to a sample
Matrix Spike Dup	Amount of analyte found including amount that was spiked.
Matrix Spike % Recovery	Amount of analyte found in duplicate spikes including amount that was spike.
Matrix Spike Dup % Recovery	% Recovery of spiked amount in sample.
RPD	% Recovery of spiked duplicate amount in sample.
Blank	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
LCS % Recovery	Method Blank that has been taken through all steps of the analysis.
Recovery Limits	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
CC	A range within which specified measurements results must fall to be compliant.
	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116
Massachusetts Laboratory Certification M-CT903
Pennsylvania NELAP Accreditation 68-02927

New York NELAP Accreditation 11982
Rhode Island Certification 199

This certification form is to be used for RCP methods only.

Printed Name: <u>David Ditta</u>	Position: <u>Laboratory Director</u>
Date: <u>05/24/2022</u>	
Name of Laboratory: <u>Complete Environmental Testing, Inc.</u>	

not meet the requirements for "Reasonable Confidence." This form may not be altered and all questions must be answered.

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #A, or #B is "No", the data package does not contain the requested information.

Notes: For all questions to which the response was "No" (with the exception of question #7), additinal information

Page 10 of 10

1	For each analytical method referenced in this laboratory report package, were all specified Q/A/QC performance criteria followed, including the requirement to exclude any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol document?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
2	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respecitive RCP methods)?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No <input type="checkbox"/> N/A
3	Were all samples received at an appropriate temperature (< 6 degrees C.)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> N/A
4	Were all Q/A/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
5b	b) Were these reporting limits met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analysis lists presented in the Reasonable Confidence Protocol documents?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
7	Are project specific matrix spikes and laboratory duplicate samples included with this data set?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No

CE#:**2050413** CER#:**2050413** CCR#:**2050413** CSD#:**2050413**

2050413-01 thru 2050413-06
05/12/2022

Sample ID(s): Labaratory Sample Data

Wiley Online Library www.wileyonlinelibrary.com DOI: 10.1002/anie

Project Location: Prosser Library, Bloomfield

LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

REASONABLE CONFIDENCE PROTOCOL

RCP Case Narrative

4- See Exceptions Report Below

6- The client requested a subset of the RCP 8270 and metals lists.

4- Exceptions Report

Analyte	QC Type	Exception	Result	RPD	Recovery (%)	Batch/Sequence
Carbon Disulfide	LCS	High	65.8		132	B2E1910
Carbon Disulfide	CC	High	65.8		132	S2E1907
2-Butanone (MEK)	ICV		Analyte exceeds method limit of second source standard. Non-directional bias			
Acetone	ICV		Analyte exceeds method limit of second source standard. Non-directional bias			
Dichlorodifluoromethane	ICV		Analyte exceeds method limit of second source standard. Non-directional bias			
Tetrahydrofuran	ICV		Analyte exceeds method limit of second source standard. Non-directional bias			

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
B2E1814		2050413-01	SB-1 0-2ft	CT-ETPH	Soil	05/12/2022
B2E1814		2050413-02	SB-2 0-2ft	CT-ETPH	Soil	05/12/2022
B2E1814		2050413-03	SB-3 5-7ft	CT-ETPH	Soil	05/12/2022
B2E1814		2050413-04	SB-4 2-4t	CT-ETPH	Soil	05/12/2022
B2E1814		2050413-05	SB-5 2-4t	CT-ETPH	Soil	05/12/2022
B2E1814		2050413-06	Dup-001	CT-ETPH	Soil	05/12/2022
B2E1818	S2E1806	2050413-01	SB-1 0-2ft	EPA 6010C	Soil	05/12/2022
B2E1818	S2E1806	2050413-02	SB-2 0-2ft	EPA 6010C	Soil	05/12/2022
B2E1818	S2E1806	2050413-03	SB-3 5-7ft	EPA 6010C	Soil	05/12/2022
B2E1818	S2E1806	2050413-04	SB-4 2-4t	EPA 6010C	Soil	05/12/2022
B2E1818	S2E1806	2050413-05	SB-5 2-4t	EPA 6010C	Soil	05/12/2022
B2E1818	S2E1806	2050413-06	Dup-001	EPA 6010C	Soil	05/12/2022
B2E1808		2050413-01	SB-1 0-2ft	EPA 7471B	Soil	05/12/2022
B2E1808		2050413-02	SB-2 0-2ft	EPA 7471B	Soil	05/12/2022
B2E1808		2050413-03	SB-3 5-7ft	EPA 7471B	Soil	05/12/2022
B2E1808		2050413-04	SB-4 2-4t	EPA 7471B	Soil	05/12/2022
B2E1808		2050413-05	SB-5 2-4t	EPA 7471B	Soil	05/12/2022
B2E1808		2050413-06	Dup-001	EPA 7471B	Soil	05/12/2022
B2E1910	S2E1907	2050413-01	SB-1 0-2ft	EPA 8260C	Soil	05/12/2022
B2E1902	S2E2310	2050413-01	SB-1 0-2ft	EPA 8270D	Soil	05/12/2022
B2E1902	S2E2310	2050413-02	SB-2 0-2ft	EPA 8270D	Soil	05/12/2022
B2E1902	S2E2310	2050413-03	SB-3 5-7ft	EPA 8270D	Soil	05/12/2022
B2E1902	S2E2310	2050413-04	SB-4 2-4t	EPA 8270D	Soil	05/12/2022
B2E1902	S2E2310	2050413-05	SB-5 2-4t	EPA 8270D	Soil	05/12/2022
B2E1902	S2E2310	2050413-06	Dup-001	EPA 8270D	Soil	05/12/2022

CERTIFICATIONS**Certified Analyses included in this Report**

Analyte	Certifications
<i>CT-ETPH in Soil</i>	
ETPH	CT
<i>EPA 6010C in Soil</i>	
Lead	CT,NY,PA
Selenium	CT,NY,PA
Cadmium	CT,NY,PA
Chromium	CT,NY,PA
Arsenic	CT,NY,PA
Barium	CT,NY,PA
Silver	CT,NY,PA
<i>EPA 7471B in Soil</i>	
Mercury	CT,NY,PA
<i>EPA 8260C in Soil</i>	
Dichlorodifluoromethane	CT,NY,PA
Chloromethane	CT,NY,PA
Vinyl Chloride	CT,NY,PA
Bromomethane	CT,NY,PA
Chloroethane	CT,NY,PA
Trichlorofluoromethane	CT,NY,PA
Acetone	CT,NY,PA
Acrylonitrile	CT
Trichlorotrifluoroethane	CT,NY,PA
1,1-Dichloroethene	CT,NY,PA
Methylene Chloride	CT,NY,PA
Carbon Disulfide	CT,NY,PA
Methyl-t-Butyl Ether (MTBE)	CT,NY,PA
trans-1,2-Dichloroethene	CT,NY,PA
1,1-Dichloroethane	CT,NY,PA
2-Butanone (MEK)	CT,NY,PA
2,2-Dichloropropane	CT,NY,PA
cis-1,2-Dichloroethene	CT,NY,PA
Bromochloromethane	CT,NY,PA
Chloroform	CT,NY,PA
Tetrahydrofuran	CT
1,1,1-Trichloroethane	CT,NY,PA
Carbon Tetrachloride	CT,NY,PA
1,1-Dichloropropene	CT,NY,PA
Benzene	CT,NY,PA
1,2-Dichloroethane	CT,NY,PA
Trichloroethene	CT,NY,PA
1,2-Dichloropropane	CT,NY,PA
Dibromomethane	CT,NY,PA
Bromodichloromethane	CT,NY,PA
Methyl Isobutyl Ketone	CT,NY,PA
cis-1,3-Dichloropropene	CT,NY,PA
Toluene	CT,NY,PA
trans-1,3-Dichloropropene	CT,NY,PA
2-Hexanone	CT,NY,PA
1,1,2-Trichloroethane	CT,NY,PA

CERTIFICATIONS**Certified Analyses included in this Report**

Analyte	Certifications
EPA 8260C in Soil	
Tetrachloroethene	CT, NY, PA
1,3-Dichloropropane	CT, NY, PA
Dibromochloromethane	CT, NY, PA
1,2-Dibromoethane	CT, NY, PA
trans-1,4-Dichloro-2-Butene	CT, NY, PA
Chlorobenzene	CT, NY, PA
1,1,1,2-Tetrachloroethane	CT, NY, PA
Ethylbenzene	CT, NY, PA
m+p Xylenes	CT, NY, PA
o-Xylene	CT, NY, PA
Styrene	CT, NY, PA
Bromoform	CT, NY, PA
Isopropylbenzene	CT, NY, PA
1,1,2,2-Tetrachloroethane	CT, NY, PA
Bromobenzene	CT, NY, PA
1,2,3-Trichloropropane	CT, NY, PA
n-Propylbenzene	CT, NY, PA
2-Chlorotoluene	CT, NY, PA
4-Chlorotoluene	CT, NY, PA
1,3,5-Trimethylbenzene	CT, NY, PA
tert-Butylbenzene	CT, NY, PA
1,2,4-Trimethylbenzene	CT, NY, PA
sec-Butylbenzene	CT, NY, PA
1,3-Dichlorobenzene	CT, NY, PA
4-Isopropyltoluene	CT, NY, PA
1,4-Dichlorobenzene	CT, NY, PA
1,2-Dichlorobenzene	CT, NY, PA
n-Butylbenzene	CT, NY, PA
1,2-Dibromo-3-Chloropropane	CT, NY, PA
1,2,4-Trichlorobenzene	CT, NY, PA
Hexachlorobutadiene	CT, NY
Naphthalene	CT, NY, PA
1,2,3-Trichlorobenzene	CT
EPA 8270D in Soil	
Naphthalene	CT, NY, PA
2-Methyl Naphthalene	CT, NY, PA
Acenaphthylene	CT, NY, PA
Acenaphthene	CT, NY, PA
Fluorene	CT, NY, PA
Phenanthrene	CT, NY, PA
Anthracene	CT, NY, PA
Fluoranthene	CT, NY, PA
Pyrene	CT, NY, PA
Benzo[a]anthracene	CT, NY, PA
Chrysene	CT, NY, PA
Benzo[b]fluoranthene	CT, NY, PA
Benzo[k]fluoranthene	CT, NY, PA
Benzo[a]pyrene	CT, NY, PA
Indeno[1,2,3-cd]pyrene	CT, NY, PA

CERTIFICATIONS**Certified Analyses included in this Report**

Analyte	Certifications
EPA 8270D in Soil	
Dibenz[a,h]anthracene	CT,NY,PA
Benzo[g,h,i]perylene	CT,NY,PA

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	12/31/2022
NY	New York Certification (NELAC)	11982	04/01/2023
PA	Pennsylvania DEP	68-02927	05/31/2022

2050413

COMPLETE ENVIRONMENTAL TESTING, INC.

CHAIN OF CUSTODY

Volatile Soils Only:

Date and Time in Freezer

Client:

CET:

80 Luples Drive Stratford, CT 06615		Tel: (203) 377-9984 Fax: (203) 377-9952 e-mail: cetservices@cetlabs.com e-mail: bottleorders@cetlabs.com		Matrix A=Air S=Soil W=Water DW=Drinking Water C=Cassette Solid Wipe Other (Specify)	Turnaround Time ** (check one)	Metals										Additional Analysis			TOTAL # OF CONT.	NOTE #											
Sample ID/Sample Depths (include Units for any sample depths provided)		Collection Date/Time		Same Day *	Next Day *	Two Day *	Three Day *	Std (5-7 Days)	8260 CT List	8260 Aromatics	8260 Halogens	CT ETPH	8270 CT List	8270 PNAS	PCBs <input type="checkbox"/> ASE <input type="checkbox"/>	Pesticides	8 RCRA	13 Priority Poll			15 CT DEP	Total	SPLP	TCLP	Dissolved	Field Filtered	Lab to Filter				
SB-1 (0-2)		5/12/22 8:45 S					X					X				X											X X				
SB-2 (0-2)		10:00																													
SB-3 (5-7)		10:45																													
SB-4 (2-4)		12:30																													
SB-5 (2-4)		13:00																													
DUP-001																															

PHASE II ENVIRONMENTAL SITE INVESTIGATION

FORMER RILEY LUMBER PROPERTY
PROSSER LIBRARY PROJECT
6 MOUNTAIN AVENUE
BLOOMFIELD, CONNECTICUT

Prepared for:
Town of Bloomfield

Client Ref: 144.12571.00015

July 2022

SLR

PHASE II ENVIRONMENTAL SITE INVESTIGATION

Prepared for:

Town Of Bloomfield (TOB)

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Peter Shea, LEP
Principal Environmental Scientist

Matthew Rose
Project Environmental Scientist

TABLE OF CONTENTS

1. INTRODUCTION	1
1.1 Purpose and Scope.....	1
1.2 Site Description	1
1.3 Previous Environmental Investigation	2
2. PROJECT SCOPE AND CONCEPTUAL SITE MODEL	3
2.1 Project Scope.....	3
2.2 Conceptual Site Model (CSM)	3
3. REGULATORY FRAMEWORK	4
3.1 Regulatory Model.....	4
3.2 Soil Comparative Criteria	4
4. PHASE II ENVIRONMENTAL SITE INVESTIGATION.....	6
4.1 Phase II Investigation Activities.....	6
4.1.1 Soil Boring Installation and Sampling	6
4.1.2 Laboratory.....	7
4.1.3 Quality Assurance/Quality Control (QA/QC)	7
4.2 Phase II Investigation Results.....	8
4.2.1 AOC-1: Former 500-Gallon UST	8
4.2.2 AOC-1 Conclusions.....	8
5. CONCLUSIONS	9

FIGURES

Figure 1 – Site Location Map

Figure 2 – Site Plan & Sampling Locations

TABLES

Table 1 – Summary of Soil Results

APPENDICES

Appendix A – Boring Logs

Appendix B – Laboratory Analytical Report

1. INTRODUCTION

SLR International Corporation (SLR) has prepared this limited Phase II Environmental Site Investigation (Phase II ESI) report for the Former Riley Lumber property located at 6 Mountain Avenue in Bloomfield, CT (the "Site" or Subject Property") (see Figure 1). The parcel is owned by the Town of Bloomfield (TOB) and this report has been prepared for the TOB's use.

1.1 PURPOSE AND SCOPE

The purpose of a Phase II ESI is to evaluate if a release has occurred that impacted soil and/or groundwater from identified recognized environmental conditions (RECs) or area of concern (AOC) as noted in the Phase I Environmental Site Assessment (ESA) dated June 2022. The scope and purposes of this work can be summarized as follows:

- SLR developed a Conceptual Site Model (CSM) in accordance with "prevailing standards and guidelines," including the Connecticut Department of Energy & Environmental Protection (CTDEEP) December 2010 *Site Characterization Guidance Document* (SCGD, [DEEP, 2010]). A CSM is a means to enumerate and organize the locations where previous commercial/industrial users of the Site may have handled, stored, used, and potentially released oil and/or hazardous materials commonly referred to as constituents of concern (COCs); the COCs for the Site include petroleum hydrocarbons, volatile organic compounds (VOCs), and semi-volatile compounds (SVOCs) associated with the contents of a former 500-gallon underground storage tank (UST) removed in December 1999.
- Assess environmental media to establish the presence or absence of a release of hazardous materials or petroleum products in the RECs or AOCs identified at the Site. Figure 2 depicts the location of the AOC addressed in this report.
- In the event that evidence of a release occurred, SLR documented the nature of the COCs and completed an initial comparison of the data to the numerical cleanup criteria listed in the Remediation Standard Regulations (RSRs) (Regulations of Connecticut State Agencies (RSCA) §22a-133k-1 through 22a-133k-3, inclusive), which are applicable to the Site.

1.2 SITE DESCRIPTION

The Subject Property is comprised of a 2.54-acre parcel in the central portion of Bloomfield, Connecticut. The parcel is zoned as Bloomfield Central District (BCD) and is currently owned by the Town of Bloomfield. The Site is improved upon by a three-story library in the southeast portion of the property with associated asphalt parking area in the northern and western portions of the site (Figure 2).

The Site is improved upon by one structure described by the Town of Bloomfield Assessor card as being built in 1933 and approximately 4,800 square feet in area. The parcel is identified as 31-23. The building is located in the south-central portion of the parcel. The area to the south of the building is an asphalt parking lot with access to Mountain Avenue (Route 178). The asphalt lot transitions to a mix of asphalt

millings and gravel to the north side of the building and then to a wooded lot along the northern and eastern portions of the parcel. Wash Brook is located along the eastern property boundary.

The building is described as “warehouse-storage” and constructed of a clapboard walls and metal roof. The building exterior is in fair condition with paint chipping on the northern and southern exterior walls. The interior is post and beam construction with storage bins constructed of wood and an asphalt connector through the two metal bay doors on each end of the building. The building is raised with a wood floor and set upon concrete pillars. The crawl space under the building is mostly dirt with asphalt through the two garage doors through the central portion of the structure.

The Subject Property is bound to the north by a vacant wooded lot; to the east by Wash Brook and then a public library; to the south by Mountain Avenue and then residential/commercial land use; and to the west commercial building (strip mall).

Site History

The existing structure was part of the former Riley Lumber business that was present at the Site from approximately 1933 through 2018 when the Town of Bloomfield acquired the property. The property was utilized as a commercial lumber yard with the building housing sales and storage and the areas to the north and east of the building used for storage of lumber and other associated materials.

1.3 PREVIOUS ENVIRONMENTAL INVESTIGATION

Based on the Phase I ESA dated June 2022, no RECs were identified, and the only AOC included the following:

- **AOC-1: Former 500-gallon UST:** A 500-gallon UST was removed from the property in December 1999. According to Town records the removal was permitted and inspected by the Fire Marshall with no visible signs of release. However, there were no soil samples collected to confirm the observation.

No other previous environmental reports or investigations were identified in the 2022 Phase I ESA.

2. PROJECT SCOPE AND CONCEPTUAL SITE MODEL

2.1 PROJECT SCOPE

SLR retained SITE, LLC to complete the advancement of three soil borings to evaluate AOC-1. SLR oversaw the completion of the soil borings, screened the soil samples for evidence of impacts, characterized the geology encountered, collected one soil sample per boring, submitted the samples to a state-certified laboratory for analysis of the COCs, and evaluated the analytical data to help determine the presence or absence of releases and impacts associated with the identified AOC.

2.2 CONCEPTUAL SITE MODEL (CSM)

The CSM for the Site has been developed using available information. Selection of soil sampling locations and analyses included the following elements:

- COCs and their likely release mechanisms
- Environmental setting of the potential release, including characteristics of subsurface structures and materials that could influence migration
- Fate and transport characteristics of the released substances, including degradation products
- Potential migration pathways

The primary COCs for AOC-1 include ETPH, VOCs, and SVOCs due to potential impacts associated with the former UST and its contents (reportedly containing heating fuel). A release from the tank would have impacted the soils surrounding the bottom of the tank with migration downward to the overburden groundwater and then horizontal in the direction of groundwater flow.

3. REGULATORY FRAMEWORK

3.1 REGULATORY MODEL

Based on the findings of the Phase I ESA (SLR, 2022), the Site does not meet the definition of an “Establishment” as defined by the Connecticut Transfer Act (CTA) and thus is not subject to investigation and remediation requirements as established in the RSRs. Even though the RSRs do not technically apply to the Site they were used to evaluate the presence of contaminants within the investigation areas. This comparison allows for management of contaminated media, if detected, in a manner consistent with applicable regulations or if further investigation is warranted to delineate the impacts for transactional purposes or to evaluate potential risk to human health and the environment.

The following factors were used to evaluate the levels of COCs in soil at the Site.

- The Site is currently zoned for industrial/commercial use, and the future use of the Site is anticipated to be similar.
- According to the CTDEEP Water Quality Classification Map, the Site is located within an area where groundwater quality has been classified as GA, meaning that water is presumed to be suitable for consumption without pretreatment. No groundwater uses are known to exist in the Site area. Groundwater was not evaluated as part of this Phase II ESI. The focus of this Phase II ESI was to help determine if a release to soil had occurred from the AOC identified.
- The nearest named surface water body is the Wash Brook located along the eastern boundary of the parcel.

3.2 SOIL COMPARATIVE CRITERIA

Based upon the information listed above, this section describes RSR criteria that would be applicable to the Site.

Direct Exposure Criteria (DEC)—The DEC was developed to be protective of human health in the event of direct contact with soil impacted by COCs. Regardless of the use or zoning of the property, the Residential DEC (Res DEC) apply to all properties in Connecticut. The RSRs also contain another set of DEC, the Industrial/Commercial DEC (I/C DEC), which can be used on nonresidential properties with the placement of an Environmental Land Use Restriction (ELUR) on the property. Such an ELUR would restrict the use of the property from residential uses as defined in the RSRs (§ 22a-133k-1(53)). The DEC apply to all soils within 15 feet of the ground surface regardless of the elevation of the water table. For the purposes of this assessment, both the RES DEC and I/C DEC have been considered.

Pollutant Mobility Criteria (PMC)—The PMC were developed to protect groundwater resources from soil-bound COCs that could mobilize and degrade groundwater quality. Because groundwater in the area of the Site has been classified by the CTDEEP as GA, the GA PMC will be used to evaluate the available soil data. These criteria apply to all soils located at or above the seasonal low-water table (estimated at 5 to 7 ft bgs).

Additional Polluting Substances (APS) - The RSRs contain numeric cleanup standards for 88 substances. When a contaminant at a Site is not one of the 88 substances listed in the RSRs, numeric criteria must be requested and approved by the Commissioner in order to complete cleanup at the Site under the RSRs, unless background concentrations are met. These are called APS criteria. For many substances, the Department has pre-evaluated available scientific information and has published numeric criteria that have been pre-evaluated. For the purposes of this evaluation, the published APS criteria have been considered where necessary.

4. PHASE II ENVIRONMENTAL SITE INVESTIGATION

This section presents the findings of this Phase II ESI activities for the AOC identified in the June 2022 Phase I ESA.

4.1 PHASE II INVESTIGATION ACTIVITIES

SLR conducted field activities associated with the Phase II ESI on July 11, 2022. The AOC was assessed for evidence of a release of hazardous substances using the CSM approach as required by the CTDEEP SCGD.

In preparation for Site investigational activities, the following preliminary activities were conducted:

- Contacting "Call Before You Dig" (CBYD) to mark buried utilities in the work areas prior to on Site intrusive investigations. Anticipated investigation areas were marked in white paint 72 hours prior to contacting CBYD. CBYD only marks certain utilities to the entry point to the building/property.
- Preparation of a Site-Specific Health & Safety Plan (SS-HASP).
- Performance of GPR survey to augment the CBYD markings and to clear the proposed boring locations.
 - No significant alterations to the original proposed boring locations were necessary following the utility mark-outs by CBYD and the private utility locating subcontractor.
- Contract with state-licensed drilling contractor (SITE, LLC)

4.1.1 Soil Boring Installation and Sampling

SLR oversaw the installation of three total soil borings, SB-1 through SB-3, by the subcontracted driller, SITE, LLC on June 11, 2022. The soil borings were logged by SLR field personnel, and the soil was screened for visual staining, odors, or other evidence of impact. In addition, the presence of VOCs was evaluated using a calibrated PID. Attached Figure 2 shows the site boring locations, and a copy of the soil boring logs is included as Appendix A.

The soil sampling intervals were selected to characterize the maximum concentration of release and to confirm the presence of impacted soil if encountered. If the visual inspection and field screening of the soil did not indicate the presence of any impact, then the sample was collected at predefined intervals for laboratory analysis based upon the CSM.

A track-mounted machine was utilized using the direct-push method for sample collection. A disposable macro core sampler was used at 5-foot intervals for sample retrieval. All reused drilling equipment was cleaned with an alconox detergent rinse between borings. Upon completion, each soil boring was backfilled with excess soil from the boring or clean sand to grade.

The table below shows a summary of soil sample collection, including the associated AOCs, depth intervals, and the requested laboratory analyses.

AOC	Sample ID (Depth Interval in feet below grade)	VOCs	SVOCs	ETPH
AOC-1 Impacted urban fill and building debris	SB-1 (2-3 ft)	X	X	X
	SB-2 (2-3 ft)	X	X	X
	SB-3 (2-3 ft)	X	X	X

4.1.2 Laboratory

Soil samples were submitted to Phoenix Environmental Laboratories, Inc., for analysis of the COCs identified above. A copy of the laboratory report is provided in Appendix B.

4.1.3 Quality Assurance/Quality Control (QA/QC)

On September 1, 2007, CTDEEP introduced the requirement that all sample analysis comply with the RCPs. In May 2009, the Data Quality Assessment (DQA) and Data Usability Evaluation (DUE) process also became applicable. The RCP and DQA/DUE programs were developed to ensure that analytical data generated during investigation and remediation projects in Connecticut are of a known and appropriate quality. This process is in place to ensure achievement of the Data Quality Objectives (DQOs) in support of the eventual Verifications pertaining to CTA properties or for properties entered into a CTDEEP program (i.e., Voluntary Program or Brownfield).

The soil analyses performed during this Phase II ESI occurred after the implementation of these two programs. Therefore, the resulting laboratory analysis was conducted using the RCP procedures. SLR reviewed all laboratory reports to ensure accuracy and that reporting limits were in line with the applicable RSR numerical criteria. Additionally, all samples were collected into appropriate containers and preserved where required, and all sampling equipment was decontaminated prior to use.

All samples were stored on ice during transport to the laboratory using proper chain of custody procedures. Sample temperatures were logged at the lab and reported. A RCP certification form is provided with the laboratory reporting form. Based on the RCP report there is no indication the data is out of conformance and the results are reliable to evaluate soil conditions.

4.2 PHASE II INVESTIGATION RESULTS

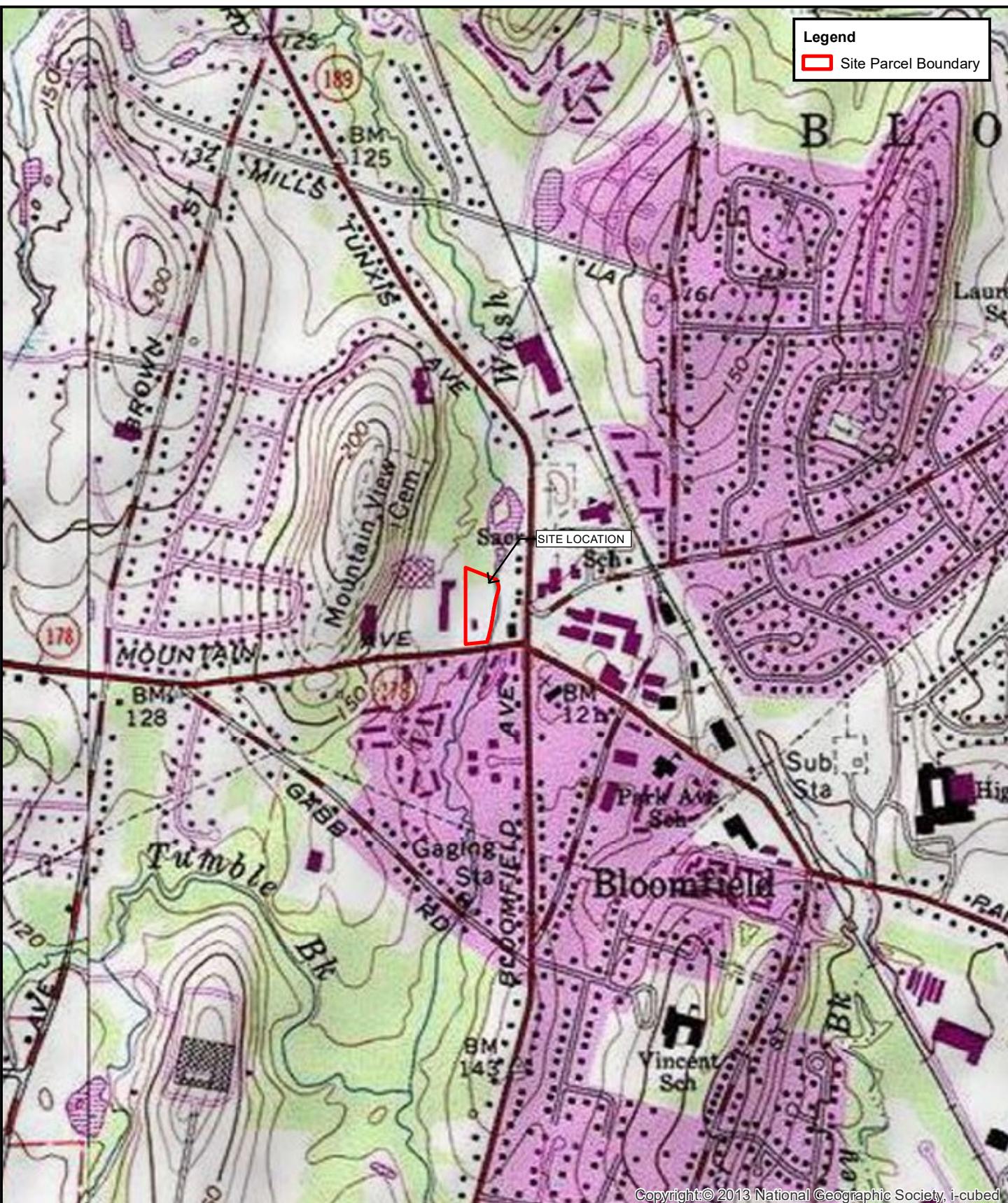
4.2.1 AOC-1: FORMER 500-GALLON UST

SLR collected soil samples from three soil borings (SB-1, SB-2, and SB-3) completed to evaluate this AOC. The three soil borings were completed in proximity of where the former tank was located and subsequently removed in 1999 (Figure 2). Refer to Table 1 for a summary of the laboratory results.

SB-1 was advanced at the western edge of the building, SB-2 in the center of where the former tank was reportedly located, and SB-3 on the eastern edge of the AOC in front of the overhead door. SB-1 and SB-3 were completed to a depth of 10 ft bg, and SB-2 was completed to a depth of 15 ft bg. One soil sample was collected from each boring to help evaluate if a historical release had occurred and/or to confirm the Fire Marshall report indicating no visible signs of release during its removal in 1999.

The soil encountered at the three boring locations was consistent, with topsoil underlain by fill consisting of mostly sand and trace gravel over buried organic layer and then a native silty sand deposit. The fill material consisted of reddish brown fine to medium sand with trace gravel to a depth of 2 ft bg. The organic and silt layer was encountered from approximately 2 to 3 ft bg, had a slight organic odor, and PID reading just above 1.0 ppm. The remaining soil below the organic layer consisted of gray/brown silty sand that was compact and likely native deposits. Water-table was encountered at approximately 4.5 ft bg.

The soil sample was collected from the organic layer observed from 2-3 ft bg based on the slight odor observed and PID reading. The soil samples were analyzed for ETPH, VOCs, and SVOCs. Based on the laboratory results there was no detection above the laboratory reporting limit (RL) for ETPH or any SVOC compounds. Only one VOC compound (n-propylbenzene) was detected in the sample collected from SB-1 at 11 micrograms per kilogram and no other VOCs were detected above the RL. The result of the VOC compound was well below the APS clean-up criteria and is not indicative of a heating oil release.


4.2.2 AOC-1 CONCLUSIONS

Based on the results of the soil borings and report completed by the Fire Marshal there does not appear to be a release related to the former 500-gallon UST at the Site. The soil results were all below the RL with the exception of one VOC compound detected at a low concentration well below the RSR clean-up criteria. No further investigation is recommended for this AOC.

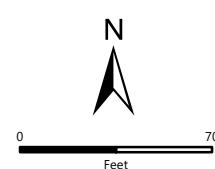
5. CONCLUSIONS

Based upon the data collected, the soil encountered in the area of the former UST consisted of topsoil over a relatively thin fill layer, then organic silty sand over native outwash deposit of fine sand and silt. Groundwater was encountered at approximately 4 to 5 ft bg. There were no indications of soil impacts in any of the three soil borings based on visual or olfactory observations. The laboratory results further confirm the findings of the Fire Marshal that a release did not occur or impact the surrounding soil. There were no detections of ETPH, SVOCs in any of the three soil samples and only one VOC compound detected at a low concentration was present well below the RSR clean-up criteria. No further investigation is recommended for this AOC.

FIGURES

Copyright © 2013 National Geographic Society, i-cubed

 45 GLASTONBURY BLVD 1ST FL GLASTONBURY, CT 06033 860.400.5680	SITE LOCATION MAP FORMER RILEY LUMBER PARCEL PHASE II ESI 6 MOUNTAIN AVENUE BLOOMFIELD, CONNECTICUT	N 0 500 1,000 Feet	SCALE 1" = 1,000' DATE 7/28/2022 144.12571.00015 PROJ. NO.


FIG. 1

SLR
45 GLASTONBURY BLVD
1ST FL
GLASTONBURY, CT 06033
860.400.5680

SITE PLAN & SAMPLING LOCATIONS

FORMER RILEY LUMBER PARCEL
PHASE II ESI
6 MOUNTAIN AVENUE
BLOOMFIELD, CONNECTICUT

SCALE	1" = 70'
DATE	7/28/2022
PROJ. NO.	144.12571.00015

FIG. 2

TABLES

Table 1. Soil Boring Analytical Results
 Former Riley Lumber Yard
 6 Mountain Ave, Bloomfield, CT 06002

Analyte	Lab Id	CL74570		CL74571		CL74572		
	Sample Id	SLR-SB-01 (2-3)		SLR-SB-02 (2-3)		SLR-SB-03 (2-3)		
	Sample Date	7/11/2022		7/11/2022		7/11/2022		
	DEC I/C	DEC RES	Result	RL	Result	RL	Result	RL
Miscellaneous/Inorganics (%)								
Percent Solid	NS	NS	73		72		67	
TPH By CTETPH 8015D (mg/kg)								
Ext. Petroleum H.C. (C9-C36)	2,500	500	ND<68	68	ND<68	68	ND<74	74
Volatiles By SW8260C (ug/kg)								
1,1,1,2-Tetrachloroethane	220,000	24,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,1,1-Trichloroethane	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,1,2,2-Tetrachloroethane	29,000	3,100	ND<4.4	4.4	ND<300	300	ND<5.4	5.4
1,1,2-Trichloroethane	100,000	11,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,1-Dichloroethane	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,1-Dichloroethene	9,500	1,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,1-Dichloropropene	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,2,3-Trichlorobenzene	NS	NS	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,2,3-Trichloropropane	NS	NS	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,2,4-Trichlorobenzene	200,000	21,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,2,4-Trimethylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,2-Dibromo-3-chloropropane	820	90	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,2-Dibromoethane	67	7	ND<0.74	0.74	ND<0.66	0.66	ND<0.90	0.90
1,2-Dichlorobenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,2-Dichloroethane	63,000	6,700	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,2-Dichloropropane	84,000	9,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,3,5-Trimethylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,3-Dichlorobenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
1,3-Dichloropropane	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
1,4-Dichlorobenzene	240,000	26,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
2,2-Dichloropropane	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
2-Chlorotoluene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
2-Hexanone	1,000,000	340,000	ND<37	37	ND<33	33	ND<45	45
2-Isopropyltoluene	NS	NS	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
4-Chlorotoluene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
4-Methyl-2-pentanone	1,000,000	500,000	ND<37	37	ND<33	33	ND<45	45
Acetone	1,000,000	500,000	ND<370	370	ND<330	330	ND<450	450
Acrylonitrile	11,000	1,100	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Benzene	200,000	21,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Bromobenzene	NS	NS	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
Bromochloromethane	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Bromodichloromethane	170,000	18,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Bromoform	720,000	78,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Bromomethane	1,000,000	34,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Carbon Disulfide	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Carbon tetrachloride	44,000	4,700	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Chlorobenzene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Chloroethane	1,000,000	130,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Chloroform	940,000	100,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Chloromethane	1,000,000	180,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
cis-1,2-Dichloroethene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
cis-1,3-Dichloropropene	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Dibromochloromethane	68,000	7,300	ND<4.4	4.4	ND<4.0	4.0	ND<5.4	5.4
Dibromomethane	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Dichlorodifluoromethane	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Ethylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Hexachlorobutadiene	1,200,000	130,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
Isopropylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
m&p-Xylene	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Methyl Ethyl Ketone	1,000,000	500,000	ND<44	44	ND<40	40	ND<54	54
Methyl t-butyl ether (MTBE)	1,000,000	500,000	ND<15	15	ND<13	13	ND<18	18
Methylene chloride	760,000	82,000	ND<15	15	ND<13	13	ND<18	18
Naphthalene	2,500,000	1,000,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
n-Butylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
n-Propylbenzene	1,000,000	500,000	11	7.4	ND<500	500	ND<9.0	9.0
o-Xylene	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
p-Isopropyltoluene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
sec-Butylbenzene	1,000,000	500,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
Styrene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
tert-Butylbenzene	110,000	12,000	ND<7.4	7.4	ND<500	500	ND<9.0	9.0
Tetrachloroethene	570,000	61,000	ND<15	15	ND<13	13	ND<18	18
Toluene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Total Xylenes	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
trans-1,2-Dichloroethene	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
trans-1,3-Dichloropropene	NS	NS	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0

Table 1. Soil Boring Analytical Results
 Former Riley Lumber Yard
 6 Mountain Ave, Bloomfield, CT 06002

Analyte	Lab Id		CL74570		CL74571		CL74572	
	Sample Id		SLR-SB-01 (2-3)		SLR-SB-02 (2-3)		SLR-SB-03 (2-3)	
	Sample Date		7/11/2022		7/11/2022		7/11/2022	
	DEC I/C	DEC RES	Result	RL	Result	RL	Result	RL
trans-1,4-dichloro-2-butene	NS	NS	ND<15	15	ND<1000	1,000	ND<18	18
Trichloroethene	520,000	56,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Trichlorofluoromethane	1,000,000	500,000	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Trichlorotrifluoroethane	1,000,000	500,000	ND<15	15	ND<13	13	ND<18	18
Vinyl chloride	3,000	320	ND<7.4	7.4	ND<6.6	6.6	ND<9.0	9.0
Semivolatiles By SW8270D (ug/Kg)								
1,2,4,5-Tetrachlorobenzene	610,000	20,000	ND<310	310	ND<320	320	ND<340	340
1,2,4-Trichlorobenzene	200,000	21,000	ND<310	310	ND<320	320	ND<340	340
1,2-Dichlorobenzene	1,000,000	500,000	ND<310	310	ND<320	320	ND<340	340
1,2-Diphenylhydrazine	7,200	770	ND<440	440	ND<450	450	ND<480	480
1,3-Dichlorobenzene	1,000,000	500,000	ND<310	310	ND<320	320	ND<340	340
1,4-Dichlorobenzene	240,000	26,000	ND<310	310	ND<320	320	ND<340	340
2,2'-Oxybis(1-Chloropropane)	NS	NS	ND<310	310	ND<320	320	ND<340	340
2,4,5-Trichlorophenol	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
2,4,6-Trichlorophenol	520,000	56,000	ND<310	310	ND<320	320	ND<340	340
2,4-Dichlorophenol	2,500,000	200,000	ND<310	310	ND<320	320	ND<340	340
2,4-Dimethylphenol	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
2,4-Dinitrophenol	2,500,000	140,000	ND<440	440	ND<450	450	ND<480	480
2,4-Dinitrotoluene	8,400	900	ND<310	310	ND<320	320	ND<340	340
2,6-Dinitrotoluene	8,400	900	ND<310	310	ND<320	320	ND<340	340
2-Chloronaphthalene	1,000,000	500,000	ND<310	310	ND<320	320	ND<340	340
2-Chlorophenol	2,500,000	340,000	ND<310	310	ND<320	320	ND<340	340
2-Methylnaphthalene	1,000,000	270,000	ND<310	310	ND<320	320	ND<340	340
2-Methylphenol (o-cresol)	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
2-Nitroaniline	290,000	31,000	ND<440	440	ND<450	450	ND<480	480
2-Nitrophenol	NS	NS	ND<310	310	ND<320	320	ND<340	340
3&4-Methylphenol (m&p-cresol)	NS	NS	ND<440	440	ND<450	450	ND<480	480
3,3'-Dichlorobenzidine	13,000	1,400	ND<310	310	ND<320	320	ND<340	340
3-Nitroaniline	290,000	31,000	ND<440	440	ND<450	450	ND<480	480
4,6-Dinitro-2-methylphenol	610,000	20,000	ND<440	440	ND<450	450	ND<480	480
4-Bromophenyl phenyl ether	NS	NS	ND<440	440	ND<450	450	ND<480	480
4-Chloro-3-methylphenol	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
4-Chloroaniline	29,000	3,100	ND<310	310	ND<320	320	ND<340	340
4-Chlorophenyl phenyl ether	NS	NS	ND<310	310	ND<320	320	ND<340	340
4-Nitroaniline	290,000	31,000	ND<710	710	ND<720	720	ND<770	770
4-Nitrophenol	NS	NS	ND<310	310	ND<320	320	ND<340	340
Acenaphthene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Acenaphthylene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Acetophenone	NS	NS	ND<310	310	ND<320	320	ND<340	340
Aniline	1,000,000	110,000	ND<440	440	ND<450	450	ND<480	480
Anthracene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Benz(a)anthracene	7,800	1,000	ND<310	310	ND<320	320	ND<340	340
Benzidine	200	200	ND<200	200	ND<200	200	ND<200	200
Benzo(a)pyrene	1,000	1,000	ND<310	310	ND<320	320	ND<340	340
Benzo(b)fluoranthene	7,800	1,000	ND<310	310	ND<320	320	ND<340	340
Benzo(ghi)perylene	78,000	8,400	ND<310	310	ND<320	320	ND<340	340
Benzo(k)fluoranthene	78,000	8,400	ND<310	310	ND<320	320	ND<340	340
Benzoic acid	2,500,000	1,000,000	ND<890	890	ND<900	900	ND<970	970
Benzyl butyl phthalate	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Bis(2-chloroethoxy)methane	2,500,000	200,000	ND<310	310	ND<320	320	ND<340	340
Bis(2-chloroethyl)ether	5,200	1,000	ND<440	440	ND<450	450	ND<480	480
Bis(2-ethylhexyl)phthalate	410,000	44,000	ND<440	440	ND<450	450	ND<480	480
Carbazole	290,000	31,000	ND<440	440	ND<450	450	ND<480	480
Chrysene	780,000	84,000	ND<310	310	ND<320	320	ND<340	340
Dibenz(a,h)anthracene	1,000	1,000	ND<310	310	ND<320	320	ND<340	340
Dibenzofuran	1,000,000	68,000	ND<310	310	ND<320	320	ND<340	340
Diethyl phthalate	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Dimethylphthalate	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Di-n-butylphthalate	2,500,000	1,000,000	ND<440	440	ND<450	450	ND<480	480
Di-n-octylphthalate	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Fluoranthene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Fluorene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Hexachlorobenzene	3,600	1,000	ND<310	310	ND<320	320	ND<340	340
Hexachlorobutadiene	1,200,000	130,000	ND<310	310	ND<320	320	ND<340	340
Hexachlorocyclopentadiene	1,000,000	410,000	ND<310	310	ND<320	320	ND<340	340
Hexachloroethane	410,000	44,000	ND<310	310	ND<320	320	ND<340	340
Indeno(1,2,3-cd)pyrene	7,800	1,000	ND<310	310	ND<320	320	ND<340	340
Isophorone	2,500,000	640,000	ND<310	310	ND<320	320	ND<340	340
Naphthalene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Nitrobenzene	41,000	4,000	ND<310	310	ND<320	320	ND<340	340

Table 1. Soil Boring Analytical Results
 Former Riley Lumber Yard
 6 Mountain Ave, Bloomfield, CT 06002

Analyte	Lab Id		CL74570		CL74571		CL74572	
	Sample Id		SLR-SB-01 (2-3)		SLR-SB-02 (2-3)		SLR-SB-03 (2-3)	
	Sample Date		7/11/2022		7/11/2022		7/11/2022	
	DEC I/C	DEC RES	Result	RL	Result	RL	Result	RL
N-Nitrosodimethylamine	360	200	ND<200	200	ND<200	200	ND<200	200
N-Nitrosodi-n-propylamine	820	200	ND<200	200	ND<200	200	ND<200	200
N-Nitrosodiphenylamine	1,200,000	130,000	ND<440	440	ND<450	450	ND<480	480
Pentachloronitrobenzene	2,000,000	68,000	ND<440	440	ND<450	450	ND<480	480
Pentachlorophenol	48,000	5,100	ND<440	440	ND<450	450	ND<480	480
Phenanthrene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Phenol	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Pyrene	2,500,000	1,000,000	ND<310	310	ND<320	320	ND<340	340
Pyridine	610,000	20,000	ND<440	440	ND<450	450	ND<480	480

Notes:

Result Detected

Result Exceeds Criteria

Additional Polluting Substances Criteria used

ND<310 = No Detection Above Reporting Limit

mg/kg = Milligrams per Kilograms

ug/kg = Micrograms per Kilograms

DEC I/C = Industrial/Commercial Direct Exposure Criteria

DEC RES = Residential Direct Exposure Criteria

NS = No Standard

RL = Reporting Limit

APPENDIX A

BORING LOGS

BORING LOG

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com		PROJECT: Former Riley Lumber			BORING NO.: SLR-SB-01		SHEET: 1 of 1				
		LOCATION: 6 mountain Ave, Bloomfield CT			CONTRACTOR: SITE, LLC						
		PROJ. NO: 144.12571.00015			FOREMAN: John D'Angelis						
		CLIENT: Town of Bloomfield			SLR Personnel: Ryan Cueto						
		DATE: 7/11/22			GROUND SURFACE ELEVATION: ±						
EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)			TYPE OF RIG:		
TYPE			Steel		DATE	TIME	WATER DEPTH		Direct Push		
SIZE ID (IN.)			2-inch		2022-07-01	7:30	5' approx		RIG MODEL:		
HMR. WT (LB.)		-	-	-							
HMR. FALL (IN.)		-	-	-					Geoprobe		
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)					PID (ppm)	STRATUM DESCRIPTION	
5	SB-1 (2-3')	0-5	49"	0-2" Topsoil 2-7" reddish brown c-Sand, some m-Sand, trace Gravel 7-30" Orange brown fm-Sand 30-34" Dark brown Organic and Silt, slight organic odor. Compacted, damp 34-49" Gray silt, compacted, damp, slight odor					0	Fill	
									0		
									0	Organic	
									1.6		
									0	Native	
	10		5-10	49"	0-11" Gray brown fm Sand, compact, wet 11-22" orange brown Silt and f-Sand, compact, wet. 22-49" Gray/red Silt and f-Sand, compacted, wet					0	Native
										0	
										0	Native
										0	
				EOB							
Remarks:				NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE			PROPORTIONS		
				0-4 = VERY LOOSE 4-10 = LOOSE 10-30 = MEDIUM DENSE 30-50 = DENSE 50+ = VERY DENSE	0-2 = VERY SOFT 2-4 = SOFT 4-8 = MEDIUM 8-15 = STIFF 15-30 = VERY STIFF 30+ = HARD	C = ROCK CORE S = SPLIT SPOON UP = UNDISTURBED PISTON UT = UNDISTURBED THINWALL			trace = 1% - 10% little = 10% - 20% some = 20% - 35% and = 35% - 50%		

BORING LOG

SLR International Corporation

45 Glastonbury Boulevard, Glastonbury, CT 06033
860.400.5680 | www.slrconsulting.com

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com	PROJECT:	Former Riley Lumber	BORING NO.: SLR-SB-02	SHEET: 1 of 1
	LOCATION:	6 Mountain Ave, Bloomfield CT	CONTRACTOR: SITE, LLC	
	PROJ. NO:	144.12571.00015	FOREMAN: John D'Angelis	
	CLIENT:	Town of Bloomfield	SLR Personnel: Ryan Cueto	
	DATE:	7/11/22	GROUND SURFACE ELEVATION: ±	

EQUIPMENT:		AUGER	CASING	MACROCORE	COREBRL.	GROUNDWATER DEPTH (FT.)				TYPE OF RIG:	
TYPE				Steel		DATE	TIME	WATER DEPTH		Direct-Push	
SIZE ID (IN.)				2-inch		2022-07-11	8:30	4.5' approx		RIG MODEL:	
HMR. WT (LB.)		-	-	-	-						
HMR. FALL (IN.)		-	-	-	-						
Depth (FT)	SAMPLE NUMBER	SAMPLE INTERVAL (FT.)	RECOVERY (IN)	SOIL AND ROCK CLASSIFICATION-DESCRIPTION MODIFIED BURMISTER SYSTEM (SOIL) U.S. CORPS OF ENGINEERS SYSTEM (ROCK)						PID (ppm)	
5	SB-2 (2-3)	0-5	52"	0-2" Topsoil 2-12" Red brown mc SAND, trace Gravel 12"-26" Light brown fm SAND 26-31" Dark brown Organic and Silt, slight organic odor, damp 31-40" Brown f SAND, trace m Sand, damp, compacted 40-44" Reddish Brown mc SAND, trace Silt, wet 44-52" Gray/Brown SILT, wet, compacted						0	
										0	
										0	
										1	
										0	
										0	
										0	
10		5-10	45"	Gray/Brown SILT, wet						0	
15		10-15	35"	Gray/Brown SILT, wet						0	
				End of Boring							

Remarks:	NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE	PROPORTIONS
	0-4 = VERY LOOSE	0-2 = VERY SOFT	C = ROCK CORE	trace = 1% - 10%
	4-10 = LOOSE	2-4 = SOFT	S = SPLIT SPOON	little = 10% - 20%
	10-30 = MEDIUM DENSE	4-8 = MEDIUM	UP = UNDISTURBED PISTON	some = 20% - 35%
	30-50 = DENSE	8-15 = STIFF	UT = UNDISTURBED THINWALL	and = 35% - 50%
	50+ = VERY DENSE	15-30 = VERY STIFF		
		30+ = HARD		

BORING LOG

SLR International Corporation

45 Glastonbury Boulevard, Glastonbury, CT 06033
860.400.5680 | www.slrconsulting.com

 SLR International Corporation 45 Glastonbury Boulevard, Glastonbury, CT 06033 860.400.5680 www.slrconsulting.com	PROJECT:	Former Riley Lumber	BORING NO.:	SLR-SB-03	SHEET:	1 of 1
	LOCATION:	6 mountain Ave, Bloomfield CT	CONTRACTOR:	SITE, LLC		
	PROJ. NO:	144.12571.00015	FOREMAN:	John D'Angelis		
	CLIENT:	Town of Bloomfield	SLR Personnel:	Ryan Cueto		
	DATE:	7/11/22	GROUND SURFACE ELEVATION: ±			

Remarks:	NON-PLASTIC (SPT-N)	PLASTIC (SPT-N)	SAMPLE TYPE	PROPORTIONS
	0-4 = VERY LOOSE	0-2 = VERY SOFT	C = ROCK CORE	trace = 1% - 10%
	4-10 = LOOSE	2-4 = SOFT	S = SPLIT SPOON	little = 10% - 20%
	10-30 = MEDIUM DENSE	4-8 = MEDIUM	UP = UNDISTURBED PISTON	some = 20% - 35%
	30-50 = DENSE	8-15 = STIFF	UT = UNDISTURBED THINWALL	and = 35% - 50%
	50+ = VERY DENSE	15-30 = VERY STIFF		
		30+ = HARD		

APPENDIX B

LABORATORY ANALYTICAL REPORT

Tuesday, July 19, 2022

Attn: Pete Shea
SLR International Corporation
45 Glastonbury Boulevard
Glastonbury, CT 06033

Project ID: FORMER RILEY LUMBER
SDG ID: GCL74570
Sample ID#s: CL74570 - CL74572

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

A handwritten signature in black ink, appearing to read "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

NELAC - #NY11301
CT Lab Registration #PH-0618
MA Lab Registration #M-CT007
ME Lab Registration #CT-007
NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003
NY Lab Registration #11301
PA Lab Registration #68-03530
RI Lab Registration #63
UT Lab Registration #CT00007
VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

July 19, 2022

SDG I.D.: GCL74570

Project ID: FORMER RILEY LUMBER

Client Id	Lab Id	Matrix
SLR-SB-01 (2-3)	CL74570	SOIL
SLR-SB-02 (2-3)	CL74571	SOIL
SLR-SB-03 (2-3)	CL74572	SOIL

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 19, 2022

FOR: Attn: Pete Shea
SLR International Corporation
45 Glastonbury Boulevard
Glastonbury, CT 06033

Sample Information

Matrix: SOIL
Location Code: SLR
Rush Request: Standard
P.O.#: 141.12571.00015

Custody Information

Collected by: RC
Received by: LB
Analyzed by: see "By" below

Date

Time

07/11/22 7:35

07/12/22 8:45

SDG ID: GCL74570

Phoenix ID: CL74570

Project ID: FORMER RILEY LUMBER
Client ID: SLR-SB-01 (2-3)

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	73		%		07/12/22	K	SW846-%Solid
Field Extraction	Completed				07/11/22		SW5035A
Extraction of ETPH	Completed				07/12/22	P/L	SW3546
Soil Extraction for SVOA	Completed				07/12/22	B/P/A	SW3546

TPH by GC (Extractable Products)

Ext. Petroleum H.C. (C9-C36)	ND	68	mg/Kg	1	07/13/22	AW	CTETPH 8015D
Identification	ND		mg/Kg	1	07/13/22	AW	CTETPH 8015D
<u>QA/QC Surrogates</u>							
% COD (surr)	78		%	1	07/13/22	AW	50 - 150 %
% Terphenyl (surr)	84		%	1	07/13/22	AW	50 - 150 %

Volatiles

1,1,1,2-Tetrachloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,1-Trichloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	4.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,2-Trichloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloropropene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,3-Trichloropropane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dibromoethane	ND	0.74	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
1,2-Dichloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichloropropane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,3-Dichlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,3-Dichloropropane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,4-Dichlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
2,2-Dichloropropane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
2-Chlorotoluene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
2-Hexanone	ND	37	ug/Kg	1	07/15/22	JLI	SW8260C
2-Isopropyltoluene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
4-Chlorotoluene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	37	ug/Kg	1	07/15/22	JLI	SW8260C
Acetone	ND	370	ug/Kg	1	07/15/22	JLI	SW8260C
Acrylonitrile	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Benzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Bromobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Bromochloromethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Bromodichloromethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Bromoform	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Bromomethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon Disulfide	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon tetrachloride	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Chlorobenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroform	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Chloromethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromochloromethane	ND	4.4	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromomethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Dichlorodifluoromethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Ethylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Hexachlorobutadiene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Isopropylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
m&p-Xylene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	44	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	15	ug/Kg	1	07/15/22	JLI	SW8260C
Methylene chloride	ND	15	ug/Kg	1	07/15/22	JLI	SW8260C
Naphthalene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
n-Butylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
n-Propylbenzene	11	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
o-Xylene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
p-Isopropyltoluene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
sec-Butylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Styrene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
tert-Butylbenzene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Tetrachloroethene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	15	ug/Kg	1	07/15/22	JLI	SW8260C
Toluene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Total Xylenes	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	15	ug/Kg	1	07/15/22	JLI	SW8260C
Trichloroethene	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorofluoromethane	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	15	ug/Kg	1	07/15/22	JLI	SW8260C
Vinyl chloride	ND	7.4	ug/Kg	1	07/15/22	JLI	SW8260C
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	99		%	1	07/15/22	JLI	70 - 130 %
% Bromofluorobenzene	99		%	1	07/15/22	JLI	70 - 130 %
% Dibromofluoromethane	91		%	1	07/15/22	JLI	70 - 130 %
% Toluene-d8	98		%	1	07/15/22	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
1,2,4-Trichlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Dichlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Diphenylhydrazine	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
1,3-Dichlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
1,4-Dichlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,2'-Oxybis(1-Chloropropane)	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,4,5-Trichlorophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,4,6-Trichlorophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dichlorophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dimethylphenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrophenol	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrotoluene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2,6-Dinitrotoluene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2-Chloronaphthalene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2-Chlorophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylnaphthalene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylphenol (o-cresol)	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitroaniline	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitrophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
3,3'-Dichlorobenzidine	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
3-Nitroaniline	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
4,6-Dinitro-2-methylphenol	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
4-Bromophenyl phenyl ether	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloro-3-methylphenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloroaniline	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitroaniline	ND	710	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitrophenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Acenaphthene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Acenaphthylene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Acetophenone	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Aniline	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Anthracene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Benz(a)anthracene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Benzidine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(a)pyrene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(b)fluoranthene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(ghi)perylene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(k)fluoranthene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Benzoic acid	ND	890	ug/Kg	1	07/13/22	WB	SW8270D
Benzyl butyl phthalate	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethyl)ether	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-ethylhexyl)phthalate	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Carbazole	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Chrysene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Dibenz(a,h)anthracene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Dibenzofuran	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Diethyl phthalate	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Dimethylphthalate	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-butylphthalate	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-octylphthalate	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Fluoranthene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Fluorene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobutadiene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorocyclopentadiene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Hexachloroethane	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Isophorone	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Naphthalene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Nitrobenzene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodiphenylamine	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Pentachloronitrobenzene	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Pentachlorophenol	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
Phenanthrene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Phenol	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Pyrene	ND	310	ug/Kg	1	07/13/22	WB	SW8270D
Pyridine	ND	440	ug/Kg	1	07/13/22	WB	SW8270D
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	91		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorobiphenyl	71		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorophenol	78		%	1	07/13/22	WB	30 - 130 %
% Nitrobenzene-d5	72		%	1	07/13/22	WB	30 - 130 %
% Phenol-d5	84		%	1	07/13/22	WB	30 - 130 %
% Terphenyl-d14	80		%	1	07/13/22	WB	30 - 130 %

Project ID: FORMER RILEY LUMBER
Client ID: SLR-SB-01 (2-3)

Phoenix I.D.: CL74570

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level
QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 19, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 19, 2022

FOR: Attn: Pete Shea
SLR International Corporation
45 Glastonbury Boulevard
Glastonbury, CT 06033

Sample Information

Matrix: SOIL
Location Code: SLR
Rush Request: Standard
P.O.#: 141.12571.00015

Custody Information

Collected by: RC
Received by: LB
Analyzed by: see "By" below

Date

Time

07/11/22

7:15

07/12/22

8:45

SDG ID: GCL74570

Phoenix ID: CL74571

Project ID: FORMER RILEY LUMBER
Client ID: SLR-SB-02 (2-3)

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	72		%		07/12/22	K	SW846-%Solid
Field Extraction	Completed				07/11/22		SW5035A
Extraction of ETPH	Completed				07/12/22	P/L	SW3546
Soil Extraction for SVOA	Completed				07/12/22	B/P/A	SW3546
TPH by GC (Extractable Products)							
Ext. Petroleum H.C. (C9-C36)	ND	68	mg/Kg	1	07/13/22	AW	CTETPH 8015D
Identification	ND		mg/Kg	1	07/13/22	AW	CTETPH 8015D
QA/QC Surrogates							
% COD (surr)	83		%	1	07/13/22	AW	50 - 150 %
% Terphenyl (surr)	91		%	1	07/13/22	AW	50 - 150 %

Volatiles

1,1,1,2-Tetrachloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,1-Trichloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	300	ug/Kg	50	07/15/22	JLI	SW8260C
1,1,2-Trichloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloropropene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,2,3-Trichloropropane	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dibromoethane	ND	0.66	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichlorobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
1,2-Dichloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichloropropane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,3-Dichlorobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
1,3-Dichloropropane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
1,4-Dichlorobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
2,2-Dichloropropane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
2-Chlorotoluene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
2-Hexanone	ND	33	ug/Kg	1	07/15/22	JLI	SW8260C
2-Isopropyltoluene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
4-Chlorotoluene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	33	ug/Kg	1	07/15/22	JLI	SW8260C
Acetone	ND	330	ug/Kg	1	07/15/22	JLI	SW8260C
Acrylonitrile	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Benzene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Bromobenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
Bromochloromethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Bromodichloromethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Bromoform	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Bromomethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon Disulfide	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon tetrachloride	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Chlorobenzene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroform	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Chloromethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromochloromethane	ND	4.0	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromomethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Dichlorodifluoromethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Ethylbenzene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Hexachlorobutadiene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
Isopropylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
m&p-Xylene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	40	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	13	ug/Kg	1	07/15/22	JLI	SW8260C
Methylene chloride	ND	13	ug/Kg	1	07/15/22	JLI	SW8260C
Naphthalene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
n-Butylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
n-Propylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
o-Xylene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
p-Isopropyltoluene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
sec-Butylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
Styrene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
tert-Butylbenzene	ND	500	ug/Kg	50	07/15/22	JLI	SW8260C
Tetrachloroethene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	13	ug/Kg	1	07/15/22	JLI	SW8260C
Toluene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Total Xylenes	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	1000	ug/Kg	50	07/15/22	JLI	SW8260C
Trichloroethene	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorofluoromethane	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	13	ug/Kg	1	07/15/22	JLI	SW8260C
Vinyl chloride	ND	6.6	ug/Kg	1	07/15/22	JLI	SW8260C
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	93		%	1	07/15/22	JLI	70 - 130 %
% Bromofluorobenzene	88		%	1	07/15/22	JLI	70 - 130 %
% Dibromofluoromethane	91		%	1	07/15/22	JLI	70 - 130 %
% Toluene-d8	94		%	1	07/15/22	JLI	70 - 130 %
% 1,2-dichlorobenzene-d4 (50x)	99		%	50	07/15/22	JLI	70 - 130 %
% Bromofluorobenzene (50x)	100		%	50	07/15/22	JLI	70 - 130 %
% Dibromofluoromethane (50x)	86		%	50	07/15/22	JLI	70 - 130 %
% Toluene-d8 (50x)	98		%	50	07/15/22	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
1,2,4-Trichlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Dichlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Diphenylhydrazine	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
1,3-Dichlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
1,4-Dichlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,2'-Oxybis(1-Chloropropane)	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,4,5-Trichlorophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,4,6-Trichlorophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dichlorophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dimethylphenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrophenol	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrotoluene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2,6-Dinitrotoluene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2-Chloronaphthalene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2-Chlorophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylnaphthalene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylphenol (o-cresol)	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitroaniline	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitrophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
3,3'-Dichlorobenzidine	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
3-Nitroaniline	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
4,6-Dinitro-2-methylphenol	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
4-Bromophenyl phenyl ether	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloro-3-methylphenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloroaniline	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitroaniline	ND	720	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitrophenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Acenaphthene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Acenaphthylene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Acetophenone	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Aniline	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Anthracene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benz(a)anthracene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benzidine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(a)pyrene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(b)fluoranthene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(ghi)perylene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(k)fluoranthene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Benzoic acid	ND	900	ug/Kg	1	07/13/22	WB	SW8270D
Benzyl butyl phthalate	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethyl)ether	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-ethylhexyl)phthalate	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Carbazole	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Chrysene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Dibenz(a,h)anthracene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Dibenzofuran	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Diethyl phthalate	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Dimethylphthalate	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-butylphthalate	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-octylphthalate	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Fluoranthene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Fluorene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobutadiene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorocyclopentadiene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Hexachloroethane	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Isophorone	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Naphthalene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Nitrobenzene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodiphenylamine	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Pentachloronitrobenzene	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Pentachlorophenol	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
Phenanthrene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Phenol	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Pyrene	ND	320	ug/Kg	1	07/13/22	WB	SW8270D
Pyridine	ND	450	ug/Kg	1	07/13/22	WB	SW8270D
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	65		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorobiphenyl	52		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorophenol	55		%	1	07/13/22	WB	30 - 130 %
% Nitrobenzene-d5	51		%	1	07/13/22	WB	30 - 130 %
% Phenol-d5	57		%	1	07/13/22	WB	30 - 130 %
% Terphenyl-d14	53		%	1	07/13/22	WB	30 - 130 %

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level
QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

Volatile Comment:

There was a suppression of the last internal standard in the low level analysis, all affected compounds are reported from the methanol preserved high level analysis which did not exhibit this interference.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 19, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

July 19, 2022

FOR: Attn: Pete Shea
SLR International Corporation
45 Glastonbury Boulevard
Glastonbury, CT 06033

Sample Information

Matrix: SOIL
Location Code: SLR
Rush Request: Standard
P.O.#: 141.12571.00015

Custody Information

Collected by: RC
Received by: LB
Analyzed by: see "By" below

Date

Time

07/11/22 8:00
07/12/22 8:45
SDG ID: GCL74570
Phoenix ID: CL74572

Project ID: FORMER RILEY LUMBER
Client ID: SLR-SB-03 (2-3)

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Percent Solid	67		%		07/12/22	K	SW846-%Solid
Field Extraction	Completed				07/11/22		SW5035A
Extraction of ETPH	Completed				07/12/22	P/L	SW3546
Soil Extraction for SVOA	Completed				07/12/22	B/P/A	SW3546

TPH by GC (Extractable Products)

Ext. Petroleum H.C. (C9-C36)	ND	74	mg/Kg	1	07/13/22	AW	CTETPH 8015D
Identification	ND		mg/Kg	1	07/13/22	AW	CTETPH 8015D
<u>QA/QC Surrogates</u>							
% COD (surr)	77		%	1	07/13/22	AW	50 - 150 %
% Terphenyl (surr)	83		%	1	07/13/22	AW	50 - 150 %

Volatiles

1,1,1,2-Tetrachloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,1-Trichloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,2,2-Tetrachloroethane	ND	5.4	ug/Kg	1	07/15/22	JLI	SW8260C
1,1,2-Trichloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloroethene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,1-Dichloropropene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,3-Trichlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,3-Trichloropropane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,4-Trichlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2,4-Trimethylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dibromo-3-chloropropane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dibromoethane	ND	0.90	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
1,2-Dichloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,2-Dichloropropane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,3,5-Trimethylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,3-Dichlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,3-Dichloropropane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
1,4-Dichlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
2,2-Dichloropropane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
2-Chlorotoluene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
2-Hexanone	ND	45	ug/Kg	1	07/15/22	JLI	SW8260C
2-Isopropyltoluene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
4-Chlorotoluene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
4-Methyl-2-pentanone	ND	45	ug/Kg	1	07/15/22	JLI	SW8260C
Acetone	ND	450	ug/Kg	1	07/15/22	JLI	SW8260C
Acrylonitrile	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Benzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Bromobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Bromochloromethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Bromodichloromethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Bromoform	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Bromomethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon Disulfide	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Carbon tetrachloride	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Chlorobenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Chloroform	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Chloromethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,2-Dichloroethene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
cis-1,3-Dichloropropene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromochloromethane	ND	5.4	ug/Kg	1	07/15/22	JLI	SW8260C
Dibromomethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Dichlorodifluoromethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Ethylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Hexachlorobutadiene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Isopropylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
m&p-Xylene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl Ethyl Ketone	ND	54	ug/Kg	1	07/15/22	JLI	SW8260C
Methyl t-butyl ether (MTBE)	ND	18	ug/Kg	1	07/15/22	JLI	SW8260C
Methylene chloride	ND	18	ug/Kg	1	07/15/22	JLI	SW8260C
Naphthalene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
n-Butylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
n-Propylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
o-Xylene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
p-Isopropyltoluene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
sec-Butylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Styrene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
tert-Butylbenzene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Tetrachloroethene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Tetrahydrofuran (THF)	ND	18	ug/Kg	1	07/15/22	JLI	SW8260C
Toluene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C

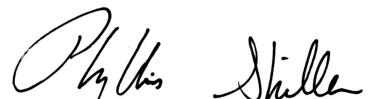
Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Total Xylenes	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,2-Dichloroethene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,3-Dichloropropene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
trans-1,4-dichloro-2-butene	ND	18	ug/Kg	1	07/15/22	JLI	SW8260C
Trichloroethene	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorofluoromethane	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
Trichlorotrifluoroethane	ND	18	ug/Kg	1	07/15/22	JLI	SW8260C
Vinyl chloride	ND	9.0	ug/Kg	1	07/15/22	JLI	SW8260C
<u>QA/QC Surrogates</u>							
% 1,2-dichlorobenzene-d4	99		%	1	07/15/22	JLI	70 - 130 %
% Bromofluorobenzene	97		%	1	07/15/22	JLI	70 - 130 %
% Dibromofluoromethane	90		%	1	07/15/22	JLI	70 - 130 %
% Toluene-d8	100		%	1	07/15/22	JLI	70 - 130 %
<u>Semivolatiles</u>							
1,2,4,5-Tetrachlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
1,2,4-Trichlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Dichlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
1,2-Diphenylhydrazine	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
1,3-Dichlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
1,4-Dichlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,2'-Oxybis(1-Chloropropane)	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,4,5-Trichlorophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,4,6-Trichlorophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dichlorophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dimethylphenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrophenol	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
2,4-Dinitrotoluene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2,6-Dinitrotoluene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2-Chloronaphthalene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2-Chlorophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylnaphthalene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2-Methylphenol (o-cresol)	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitroaniline	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
2-Nitrophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
3&4-Methylphenol (m&p-cresol)	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
3,3'-Dichlorobenzidine	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
3-Nitroaniline	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
4,6-Dinitro-2-methylphenol	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
4-Bromophenyl phenyl ether	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloro-3-methylphenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
4-Chloroaniline	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
4-Chlorophenyl phenyl ether	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitroaniline	ND	770	ug/Kg	1	07/13/22	WB	SW8270D
4-Nitrophenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Acenaphthene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Acenaphthylene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Acetophenone	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Aniline	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Anthracene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Benz(a)anthracene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Benzidine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(a)pyrene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(b)fluoranthene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(ghi)perylene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Benzo(k)fluoranthene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Benzoic acid	ND	970	ug/Kg	1	07/13/22	WB	SW8270D
Benzyl butyl phthalate	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethoxy)methane	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-chloroethyl)ether	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Bis(2-ethylhexyl)phthalate	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Carbazole	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Chrysene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Dibenz(a,h)anthracene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Dibenzofuran	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Diethyl phthalate	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Dimethylphthalate	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-butylphthalate	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Di-n-octylphthalate	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Fluoranthene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Fluorene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorobutadiene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Hexachlorocyclopentadiene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Hexachloroethane	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Indeno(1,2,3-cd)pyrene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Isophorone	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Naphthalene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Nitrobenzene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodimethylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodi-n-propylamine	ND	200	ug/Kg	1	07/13/22	WB	SW8270D
N-Nitrosodiphenylamine	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Pentachloronitrobenzene	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Pentachlorophenol	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
Phenanthrene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Phenol	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Pyrene	ND	340	ug/Kg	1	07/13/22	WB	SW8270D
Pyridine	ND	480	ug/Kg	1	07/13/22	WB	SW8270D
<u>QA/QC Surrogates</u>							
% 2,4,6-Tribromophenol	103		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorobiphenyl	87		%	1	07/13/22	WB	30 - 130 %
% 2-Fluorophenol	92		%	1	07/13/22	WB	30 - 130 %
% Nitrobenzene-d5	81		%	1	07/13/22	WB	30 - 130 %
% Phenol-d5	93		%	1	07/13/22	WB	30 - 130 %
% Terphenyl-d14	89		%	1	07/13/22	WB	30 - 130 %

Project ID: FORMER RILEY LUMBER
Client ID: SLR-SB-03 (2-3)

Phoenix I.D.: CL74572

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------


RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level
QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Per 1.4.6 of EPA method 8270D, 1,2-Diphenylhydrazine is unstable and readily converts to Azobenzene. Azobenzene is used for the calibration of 1,2-Diphenylhydrazine.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

July 19, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
 Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

July 19, 2022

QA/QC Data

SDG I.D.: GCL74570

Parameter	Blank	Blk	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
QA/QC Batch 632612 (mg/Kg), QC Sample No: CL74092 (CL74570, CL74571, CL74572)										
TPH by GC (Extractable Products) - Soil										
Ext. Petroleum H.C. (C9-C36)	ND	50	87	96	9.8	84	92	9.1	60 - 120	30
% COD (surr)	99	%	121	136	11.7	128	150	15.8	50 - 150	30
% Terphenyl (surr)	88	%	89	108	19.3	90	104	14.4	50 - 150	30
Comment:										
Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.										
QA/QC Batch 632647 (ug/kg), QC Sample No: CL74438 (CL74570, CL74571, CL74572)										
Semivolatiles - Soil										
1,2,4,5-Tetrachlorobenzene	ND	230	82	80	2.5	82	76	7.6	40 - 140	30
1,2,4-Trichlorobenzene	ND	230	76	79	3.9	75	71	5.5	40 - 140	30
1,2-Dichlorobenzene	ND	180	69	76	9.7	65	64	1.6	40 - 140	30
1,2-Diphenylhydrazine	ND	230	92	82	11.5	93	80	15.0	40 - 140	30
1,3-Dichlorobenzene	ND	230	68	77	12.4	62	61	1.6	40 - 140	30
1,4-Dichlorobenzene	ND	230	65	73	11.6	62	62	0.0	40 - 140	30
2,2'-Oxybis(1-Chloropropane)	ND	230	67	70	4.4	62	62	0.0	40 - 140	30
2,4,5-Trichlorophenol	ND	230	108	106	1.9	114	94	19.2	40 - 140	30
2,4,6-Trichlorophenol	ND	130	102	98	4.0	105	88	17.6	30 - 130	30
2,4-Dichlorophenol	ND	130	95	91	4.3	94	85	10.1	30 - 130	30
2,4-Dimethylphenol	ND	230	98	93	5.2	97	87	10.9	30 - 130	30
2,4-Dinitrophenol	ND	230	111	95	15.5	82	24	109.4	30 - 130	30
2,4-Dinitrotoluene	ND	130	103	93	10.2	106	91	15.2	30 - 130	30
2,6-Dinitrotoluene	ND	130	99	92	7.3	102	84	19.4	40 - 140	30
2-Chloronaphthalene	ND	230	91	90	1.1	94	77	19.9	40 - 140	30
2-Chlorophenol	ND	230	87	88	1.1	82	79	3.7	30 - 130	30
2-Methylnaphthalene	ND	230	84	83	1.2	84	78	7.4	40 - 140	30
2-Methylphenol (o-cresol)	ND	230	99	96	3.1	95	87	8.8	40 - 140	30
2-Nitroaniline	ND	330	120	84	35.3	108	106	1.9	40 - 140	30
2-Nitrophenol	ND	230	93	95	2.1	91	81	11.6	40 - 140	30
3&4-Methylphenol (m&p-cresol)	ND	230	106	100	5.8	100	94	6.2	30 - 130	30
3,3'-Dichlorobenzidine	ND	130	73	13	139.5	43	38	12.3	40 - 140	30
3-Nitroaniline	ND	330	97	19	134.5	55	83	40.6	40 - 140	30
4,6-Dinitro-2-methylphenol	ND	230	105	87	18.8	80	30	90.9	30 - 130	30
4-Bromophenyl phenyl ether	ND	230	102	96	6.1	103	82	22.7	40 - 140	30
4-Chloro-3-methylphenol	ND	230	104	97	7.0	104	99	4.9	30 - 130	30
4-Chloroaniline	ND	230	68	14	131.7	27	55	68.3	40 - 140	30
4-Chlorophenyl phenyl ether	ND	230	94	89	5.5	95	82	14.7	40 - 140	30
4-Nitroaniline	ND	230	102	95	7.1	102	88	14.7	40 - 140	30
4-Nitrophenol	ND	230	118	114	3.4	123	107	13.9	30 - 130	30
Acenaphthene	ND	230	95	92	3.2	98	82	17.8	30 - 130	30
Acenaphthylene	ND	130	84	80	4.9	86	73	16.4	40 - 140	30
Acetophenone	ND	230	88	89	1.1	82	78	5.0	40 - 140	30

QA/QC Data

SDG I.D.: GCL74570

Parameter	Blank	Blk RL							% Rec		% RPD	
			LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	Limits	Limits		
Aniline	ND	330	40	78	64.4	66	71	7.3	40 - 140	30	r	
Anthracene	ND	230	97	88	9.7	98	78	22.7	40 - 140	30		
Benz(a)anthracene	ND	230	92	83	10.3	98	69	34.7	40 - 140	30	r	
Benzidine	ND	330	<10	<10	NC	<10	<10	NC	40 - 140	30	l,m	
Benzo(a)pyrene	ND	130	94	88	6.6	95	73	26.2	40 - 140	30		
Benzo(b)fluoranthene	ND	160	103	106	2.9	97	77	23.0	40 - 140	30		
Benzo(ghi)perylene	ND	230	100	106	5.8	110	79	32.8	40 - 140	30	r	
Benzo(k)fluoranthene	ND	230	94	96	2.1	96	70	31.3	40 - 140	30	r	
Benzoic Acid	ND	670	116	118	1.7	95	84	12.3	30 - 130	30		
Benzyl butyl phthalate	ND	230	106	94	12.0	104	83	22.5	40 - 140	30		
Bis(2-chloroethoxy)methane	ND	230	86	84	2.4	81	75	7.7	40 - 140	30		
Bis(2-chloroethyl)ether	ND	130	71	72	1.4	62	61	1.6	40 - 140	30		
Bis(2-ethylhexyl)phthalate	ND	230	104	94	10.1	105	84	22.2	40 - 140	30		
Carbazole	ND	230	95	85	11.1	100	82	19.8	40 - 140	30		
Chrysene	ND	230	96	88	8.7	101	72	33.5	40 - 140	30	r	
Dibenz(a,h)anthracene	ND	130	102	109	6.6	112	87	25.1	40 - 140	30		
Dibenzofuran	ND	230	90	86	4.5	93	78	17.5	40 - 140	30		
Diethyl phthalate	ND	230	99	90	9.5	100	86	15.1	40 - 140	30		
Dimethylphthalate	ND	230	96	89	7.6	97	80	19.2	40 - 140	30		
Di-n-butylphthalate	ND	670	104	93	11.2	104	90	14.4	40 - 140	30		
Di-n-octylphthalate	ND	230	105	96	9.0	111	90	20.9	40 - 140	30		
Fluoranthene	ND	230	98	88	10.8	113	72	44.3	40 - 140	30	r	
Fluorene	ND	230	96	90	6.5	100	86	15.1	40 - 140	30		
Hexachlorobenzene	ND	130	98	92	6.3	98	80	20.2	40 - 140	30		
Hexachlorobutadiene	ND	230	75	81	7.7	74	70	5.6	40 - 140	30		
Hexachlorocyclopentadiene	ND	230	79	77	2.6	71	51	32.8	40 - 140	30	r	
Hexachloroethane	ND	130	67	75	11.3	61	63	3.2	40 - 140	30		
Indeno(1,2,3-cd)pyrene	ND	230	109	116	6.2	119	87	31.1	40 - 140	30	r	
Isophorone	ND	130	80	77	3.8	74	68	8.5	40 - 140	30		
Naphthalene	ND	230	79	81	2.5	78	73	6.6	40 - 140	30		
Nitrobenzene	ND	130	87	88	1.1	81	76	6.4	40 - 140	30		
N-Nitrosodimethylamine	ND	230	67	73	8.6	58	58	0.0	40 - 140	30		
N-Nitrosodi-n-propylamine	ND	130	90	87	3.4	82	76	7.6	40 - 140	30		
N-Nitrosodiphenylamine	ND	130	89	75	17.1	91	82	10.4	40 - 140	30		
Pentachloronitrobenzene	ND	230	100	92	8.3	99	82	18.8	40 - 140	30		
Pentachlorophenol	ND	230	113	112	0.9	115	99	15.0	30 - 130	30		
Phenanthrene	ND	130	97	89	8.6	114	72	45.2	40 - 140	30	r	
Phenol	ND	230	94	87	7.7	85	81	4.8	30 - 130	30		
Pyrene	ND	230	100	89	11.6	111	77	36.2	30 - 130	30	r	
Pyridine	ND	230	15	63	123.1	12	<10	NC	40 - 140	30	l,m,r	
% 2,4,6-Tribromophenol	104	%	106	97	8.9	104	88	16.7	30 - 130	30		
% 2-Fluorobiphenyl	83	%	81	80	1.2	82	67	20.1	30 - 130	30		
% 2-Fluorophenol	86	%	80	84	4.9	74	71	4.1	30 - 130	30		
% Nitrobenzene-d5	78	%	75	78	3.9	70	68	2.9	30 - 130	30		
% Phenol-d5	88	%	87	85	2.3	81	77	5.1	30 - 130	30		
% Terphenyl-d14	88	%	90	80	11.8	88	80	9.5	30 - 130	30		

Comment:

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

QA/QC Batch 633408H (ug/kg), QC Sample No: CL76366 50X (CL74571 (50X))

Volatiles - Soil (High Level)

1,1,2,2-Tetrachloroethane	ND	250	92	94	2.2	83	87	4.7	70 - 130	30
---------------------------	----	-----	----	----	-----	----	----	-----	----------	----

QA/QC Data

SDG I.D.: GCL74570

Parameter	Blank	Blk RL	QA/QC Data						% Rec Limits			% RPD Limits		
			LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	MS RPD	MS RPD	MS RPD	MS RPD	MS RPD	MS RPD
1,2,3-Trichlorobenzene	ND	250		100	103	3.0	82	94	13.6	70 - 130	30			
1,2,3-Trichloropropane	ND	250		97	98	1.0	89	92	3.3	70 - 130	30			
1,2,4-Trichlorobenzene	ND	250		104	106	1.9	85	97	13.2	70 - 130	30			
1,2,4-Trimethylbenzene	ND	250		102	102	0.0	89	98	9.6	70 - 130	30			
1,2-Dichlorobenzene	ND	250		105	106	0.9	93	100	7.3	70 - 130	30			
1,3,5-Trimethylbenzene	ND	250		103	103	0.0	91	98	7.4	70 - 130	30			
1,3-Dichlorobenzene	ND	250		103	104	1.0	90	98	8.5	70 - 130	30			
1,4-Dichlorobenzene	ND	250		104	105	1.0	90	98	8.5	70 - 130	30			
2-Chlorotoluene	ND	250		104	104	0.0	90	99	9.5	70 - 130	30			
2-Isopropyltoluene	ND	250		102	103	1.0	91	99	8.4	70 - 130	30			
4-Chlorotoluene	ND	250		101	103	2.0	89	97	8.6	70 - 130	30			
Bromobenzene	ND	250		103	103	0.0	91	97	6.4	70 - 130	30			
Hexachlorobutadiene	ND	250		103	104	1.0	88	98	10.8	70 - 130	30			
Isopropylbenzene	ND	250		102	103	1.0	89	98	9.6	70 - 130	30			
Naphthalene	ND	250		96	97	1.0	83	91	9.2	70 - 130	30			
n-Butylbenzene	ND	250		108	109	0.9	93	103	10.2	70 - 130	30			
n-Propylbenzene	ND	250		104	104	0.0	90	99	9.5	70 - 130	30			
p-Isopropyltoluene	ND	250		104	105	1.0	92	101	9.3	70 - 130	30			
sec-Butylbenzene	ND	250		104	105	1.0	91	100	9.4	70 - 130	30			
tert-Butylbenzene	ND	250		102	103	1.0	90	99	9.5	70 - 130	30			
trans-1,4-dichloro-2-butene	ND	250		90	90	0.0	75	80	6.5	70 - 130	30			
% 1,2-dichlorobenzene-d4	99	%		100	100	0.0	100	100	0.0	70 - 130	30			
% Bromofluorobenzene	98	%		101	101	0.0	102	101	1.0	70 - 130	30			
% Dibromofluoromethane	87	%		89	87	2.3	86	87	1.2	70 - 130	30			
% Toluene-d8	99	%		100	100	0.0	100	99	1.0	70 - 130	30			

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

QA/QC Batch 633175 (ug/kg), QC Sample No: CL77793 (CL74570, CL74571, CL74572)

Volatiles - Soil (Low Level)

1,1,1,2-Tetrachloroethane	ND	5.0		87	99	12.9	88	90	2.2	70 - 130	30			
1,1,1-Trichloroethane	ND	5.0		82	92	11.5	82	79	3.7	70 - 130	30			
1,1,2,2-Tetrachloroethane	ND	3.0		84	94	11.2	87	94	7.7	70 - 130	30			
1,1,2-Trichloroethane	ND	5.0		87	98	11.9	91	98	7.4	70 - 130	30			
1,1-Dichloroethane	ND	5.0		81	90	10.5	81	80	1.2	70 - 130	30			
1,1-Dichloroethene	ND	5.0		88	97	9.7	85	80	6.1	70 - 130	30			
1,1-Dichloropropene	ND	5.0		89	99	10.6	84	81	3.6	70 - 130	30			
1,2,3-Trichlorobenzene	ND	5.0		85	96	12.2	71	72	1.4	70 - 130	30			
1,2,3-Trichloropropane	ND	5.0		87	97	10.9	95	105	10.0	70 - 130	30			
1,2,4-Trichlorobenzene	ND	5.0		86	96	11.0	71	71	0.0	70 - 130	30			
1,2,4-Trimethylbenzene	ND	1.0		85	96	12.2	84	80	4.9	70 - 130	30			
1,2-Dibromo-3-chloropropane	ND	5.0		83	94	12.4	86	96	11.0	70 - 130	30			
1,2-Dibromoethane	ND	5.0		89	100	11.6	92	102	10.3	70 - 130	30			
1,2-Dichlorobenzene	ND	5.0		87	98	11.9	87	87	0.0	70 - 130	30			
1,2-Dichloroethane	ND	5.0		91	102	11.4	97	104	7.0	70 - 130	30			
1,2-Dichloropropane	ND	5.0		85	97	13.2	89	90	1.1	70 - 130	30			
1,3,5-Trimethylbenzene	ND	1.0		86	97	12.0	86	81	6.0	70 - 130	30			
1,3-Dichlorobenzene	ND	5.0		85	96	12.2	83	81	2.4	70 - 130	30			
1,3-Dichloropropane	ND	5.0		90	100	10.5	93	100	7.3	70 - 130	30			
1,4-Dichlorobenzene	ND	5.0		86	96	11.0	84	81	3.6	70 - 130	30			
2,2-Dichloropropane	ND	5.0		80	89	10.7	76	74	2.7	70 - 130	30			
2-Chlorotoluene	ND	5.0		87	98	11.9	88	83	5.8	70 - 130	30			

QA/QC Data

SDG I.D.: GCL74570

Parameter	Blank	Blk	RL	LCS				MSD				% Rec		% RPD	
				%	%	RPD	%	%	%	RPD	%	Limits	Limits		
2-Hexanone	ND	25		79	87	9.6	79	92	15.2	70 - 130	30				
2-Isopropyltoluene	ND	5.0		85	96	12.2	84	79	6.1	70 - 130	30				
4-Chlorotoluene	ND	5.0		87	96	9.8	86	82	4.8	70 - 130	30				
4-Methyl-2-pentanone	ND	25		87	98	11.9	93	107	14.0	70 - 130	30				
Acetone	ND	10		79	85	7.3	78	97	21.7	70 - 130	30				
Acrylonitrile	ND	5.0		73	81	10.4	74	89	18.4	70 - 130	30				
Benzene	ND	1.0		86	97	12.0	86	84	2.4	70 - 130	30				
Bromobenzene	ND	5.0		88	100	12.8	92	90	2.2	70 - 130	30				
Bromochloromethane	ND	5.0		87	97	10.9	89	92	3.3	70 - 130	30				
Bromodichloromethane	ND	5.0		85	96	12.2	87	90	3.4	70 - 130	30				
Bromoform	ND	5.0		85	97	13.2	84	94	11.2	70 - 130	30				
Bromomethane	ND	5.0		77	85	9.9	78	75	3.9	70 - 130	30				
Carbon Disulfide	ND	5.0		81	89	9.4	75	70	6.9	70 - 130	30				
Carbon tetrachloride	ND	5.0		77	86	11.0	73	71	2.8	70 - 130	30				
Chlorobenzene	ND	5.0		88	99	11.8	89	87	2.3	70 - 130	30				
Chloroethane	ND	5.0		73	86	16.4	70	72	2.8	70 - 130	30				
Chloroform	ND	5.0		82	92	11.5	83	83	0.0	70 - 130	30				
Chloromethane	ND	5.0		73	81	10.4	68	63	7.6	70 - 130	30	m			
cis-1,2-Dichloroethene	ND	5.0		82	92	11.5	83	82	1.2	70 - 130	30				
cis-1,3-Dichloropropene	ND	5.0		86	96	11.0	86	89	3.4	70 - 130	30				
Dibromochloromethane	ND	3.0		87	98	11.9	86	93	7.8	70 - 130	30				
Dibromomethane	ND	5.0		90	101	11.5	94	102	8.2	70 - 130	30				
Dichlorodifluoromethane	ND	5.0		64	71	10.4	57	53	7.3	70 - 130	30	l,m			
Ethylbenzene	ND	1.0		88	99	11.8	87	84	3.5	70 - 130	30				
Hexachlorobutadiene	ND	5.0		85	97	13.2	64	58	9.8	70 - 130	30	m			
Isopropylbenzene	ND	1.0		87	98	11.9	89	82	8.2	70 - 130	30				
m&p-Xylene	ND	2.0		87	98	11.9	86	83	3.6	70 - 130	30				
Methyl ethyl ketone	ND	5.0		77	85	9.9	79	95	18.4	70 - 130	30				
Methyl t-butyl ether (MTBE)	ND	1.0		85	94	10.1	92	100	8.3	70 - 130	30				
Methylene chloride	ND	5.0		72	79	9.3	70	70	0.0	70 - 130	30				
Naphthalene	ND	5.0		85	97	13.2	79	86	8.5	70 - 130	30				
n-Butylbenzene	ND	1.0		88	97	9.7	79	72	9.3	70 - 130	30				
n-Propylbenzene	ND	1.0		87	97	10.9	86	80	7.2	70 - 130	30				
o-Xylene	ND	2.0		86	97	12.0	86	84	2.4	70 - 130	30				
p-Isopropyltoluene	ND	1.0		86	97	12.0	82	77	6.3	70 - 130	30				
sec-Butylbenzene	ND	1.0		87	98	11.9	84	78	7.4	70 - 130	30				
Styrene	ND	5.0		88	99	11.8	87	87	0.0	70 - 130	30				
tert-Butylbenzene	ND	1.0		86	97	12.0	86	81	6.0	70 - 130	30				
Tetrachloroethene	ND	5.0		86	98	13.0	84	81	3.6	70 - 130	30				
Tetrahydrofuran (THF)	ND	5.0		81	89	9.4	86	101	16.0	70 - 130	30				
Toluene	ND	1.0		87	98	11.9	88	85	3.5	70 - 130	30				
trans-1,2-Dichloroethene	ND	5.0		87	96	9.8	86	82	4.8	70 - 130	30				
trans-1,3-Dichloropropene	ND	5.0		87	98	11.9	89	94	5.5	70 - 130	30				
trans-1,4-dichloro-2-butene	ND	5.0		83	93	11.4	83	89	7.0	70 - 130	30				
Trichloroethene	ND	5.0		88	98	10.8	90	87	3.4	70 - 130	30				
Trichlorofluoromethane	ND	5.0		86	96	11.0	85	81	4.8	70 - 130	30				
Trichlorotrifluoroethane	ND	5.0		80	88	9.5	78	75	3.9	70 - 130	30				
Vinyl chloride	ND	5.0		80	89	10.7	75	68	9.8	70 - 130	30	m			
% 1,2-dichlorobenzene-d4	100	%		99	99	0.0	100	101	1.0	70 - 130	30				
% Bromofluorobenzene	97	%		101	101	0.0	100	102	2.0	70 - 130	30				
% Dibromofluoromethane	90	%		92	92	0.0	93	92	1.1	70 - 130	30				
% Toluene-d8	99	%		99	100	1.0	100	100	0.0	70 - 130	30				

QA/QC Data

SDG I.D.: GCL74570

Parameter	Blank	Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec %	RPD %
			%	%	RPD	%	%	RPD	Limits	RPD Limits

Comment:

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

l = This parameter is outside laboratory LCS/LCSD specified recovery limits.

m = This parameter is outside laboratory MS/MSD specified recovery limits.

r = This parameter is outside laboratory RPD specified recovery limits.

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference

LCS - Laboratory Control Sample

LCSD - Laboratory Control Sample Duplicate

MS - Matrix Spike

MS Dup - Matrix Spike Duplicate

NC - No Criteria

Intf - Interference

Phyllis Shiller, Laboratory Director

July 19, 2022

Tuesday, July 19, 2022

Criteria: CT: I/C, RC

State: CT

SampNo Acode Phoenix Analyte

Sample Criteria Exceedances Report

GCL74570 - SLR

Criteria

Result

RL

Criteria

RL
Criteria

Analysis
Units

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedances. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc.

Client: SLR International Corporation

Project Location: FORMER RILEY LUMBER

Project Number:

Laboratory Sample ID(s): CL74570-CL74572

Sampling Date(s): 7/11/2022

List RCP Methods Used (e.g., 8260, 8270, et cetera) 8260, 8270, ETPH

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1A	Were the method specified preservation and holding time requirements met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? See Sections: SVOA Narration, VOA Narration.	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature: Rashmi Makol Position: Project Manager

Printed Name: Rashmi Makol Date: Tuesday, July 19, 2022

Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 19, 2022

SDG I.D.: GCL74570

ETPH Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? Yes.

Instrument:

AU-FID21 07/13/22-1 Jeff Bucko, Chemist 07/13/22

CL74570 (1X), CL74571 (1X), CL74572 (1X)

The initial calibration (ET_0705I) RSD for the compound list was less than 30% except for the following compounds: None. As per section 7.2.3, a discrimination check standard was run (713A003_1) and contained the following outliers: None. The continuing calibration %D for the compound list was less than 30% except for the following compounds: None.

QC (Batch Specific):

Batch 632612 (CL74092)

CL74570, CL74571, CL74572

All LCS recoveries were within 60 - 120 with the following exceptions: None.

All LCSD recoveries were within 60 - 120 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional surrogate criteria: LCS acceptance range is 60-120% MS acceptance range 50-150%. The ETPH/DRO LCS has been normalized based on the alkane calibration.

SVOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 632647 (Samples: CL74570, CL74571, CL74572): -----

The LCS and/or the LCSD recovery is below the method criteria. All of the other QC is acceptable, therefore no significant bias is suspected. (3-Nitroaniline)

The LCS/LCSD RPD exceeds the method criteria for one or more analytes, but these analytes were not reported in the sample(s) so no variability is suspected. (2-Nitroaniline, 3,3"-Dichlorobenzidine, 3-Nitroaniline, 4-Chloroaniline, Aniline, Pyridine)

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely. (3,3"-Dichlorobenzidine, 4-Chloroaniline, Pyridine, Benzidine)

Instrument:

CHEM36 07/12/22-2 Wes Bryon, Chemist 07/12/22

CL74570 (1X), CL74571 (1X), CL74572 (1X)

Initial Calibration Evaluation (CHEM36/36_SPLIT_0712):

100% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.061 (0.1), Hexachlorobenzene 0.094 (0.1)

The following compounds did not meet a minimum response factors: None.

Continuing Calibration Verification (CHEM36/0712_26-36_SPLIT_0712):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

100% of target compounds met criteria.

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 19, 2022

SDG I.D.: GCL74570

SVOA Narration

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet recommended response factors: 2-Nitrophenol 0.073 (0.1)

The following compounds did not meet minimum response factors: None.

QC (Batch Specific):

Batch 632647 (CL74438)

CL74570, CL74571, CL74572

All LCS recoveries were within 40 - 140 with the following exceptions: Benzidine(<10%), Pyridine(15%)

All LCSD recoveries were within 40 - 140 with the following exceptions: 3,3'-Dichlorobenzidine(13%), 3-Nitroaniline(19%), 4-Chloroaniline(14%), Benzidine(<10%)

All LCS/LCSD RPDs were less than 30% with the following exceptions: 2-Nitroaniline(35.3%), 3,3'-Dichlorobenzidine(139.5%), 3-Nitroaniline(134.5%), 4-Chloroaniline(131.7%), Aniline(64.4%), Pyridine(123.1%)

Additional 8270 criteria: 20% of compounds can be outside of acceptance criteria as long as recovery is at least 10%. (Acid surrogates acceptance range for aqueous samples: 15-110%, for soils 30-130%)

VOA Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 633175 (Samples: CL74570, CL74571, CL74572): -----

The QC recoveries for one or more analytes is below the method criteria. A slight low bias is likely.

(Dichlorodifluoromethane)

Instrument:

CHEM26 07/14/22-2

Jane Li, Chemist 07/14/22

CL74570 (1X), CL74571 (1X), CL74572 (1X)

Initial Calibration Evaluation (CHEM26/VT-071222):

96% of target compounds met criteria.

The following compounds had %RSDs >20%: Acetone 25% (20%), Chloroethane 21% (20%), Methylene chloride 34% (20%)

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum response factor of 0.05: None.

Continuing Calibration Verification (CHEM26/0714_34-VT-071222):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.

99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: Dichlorodifluoromethane 31%L (30%)

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

CHEM26 07/15/22-1

Jane Li, Chemist 07/15/22

CL74571 (50X)

Initial Calibration Evaluation (CHEM26/VT-071222):

96% of target compounds met criteria.

The following compounds had %RSDs >20%: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

The following compounds did not meet the minimum response factor of 0.05: None.

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

July 19, 2022

SDG I.D.: GCL74570

VOA Narration

Continuing Calibration Verification (CHEM26/0715_02-VT-071222):

Internal standard areas were within 50 to 200% of the initial calibration with the following exceptions: None.
99% of target compounds met criteria.

The following compounds did not meet % deviation criteria: None.

The following compounds did not meet maximum % deviations: None.

The following compounds did not meet Table 4 recommended minimum response factors: None.

QC (Batch Specific):

Batch 633175 (CL77793) CHEM26 7/14/2022-2

CL74570(1X), CL74571(1X), CL74572(1X)

All LCS recoveries were within 70 - 130 with the following exceptions: Dichlorodifluoromethane(64%)

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

Batch 633408H (CL76366) CHEM26 7/15/2022-1

CL74571(50X)

All LCS recoveries were within 70 - 130 with the following exceptions: None.

All LCSD recoveries were within 70 - 130 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

Additional 8260 criteria: 10% of LCS/LCSD compounds can be outside of acceptance criteria as long as recovery is 40-160%, 25-160% for Chloroethane-HL and Trichlorofluoromethane-HL.

Temperature Narration

The samples were received at 2.2C with cooling initiated.

(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

**RILEY LUMBER
6 MOUNTAIN AVENUE
BLOOMFIELD, CT 06002**

Hazardous Materials Survey

Prepared for:

Town of Bloomfield

Client Ref: SLR # 144.12571.00015.0050

April 15, 2022

SLR

Hazardous Materials Survey

Prepared for:

Town of Bloomfield
800 Bloomfield Avenue
Bloomfield CT 06002

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Ryan D. Rouillard
Principal, Building Sciences

Keith Allard
Associate Building Sciences Specialist

CONTENTS

1. INTRODUCTION	3
2. REGULATORY OVERVIEW	4
3. FIELD ACTIVITIES.....	6
4. ASBESTOS FINDINGS	7
5. CONCLUSIONS	9
6. RELIANCE.....	12
7. GENERAL COMMENTS.....	13

TABLES

Table 1	Identified Asbestos-Containing Materials and Estimated Quantities
Table 2	LBP
Table 3	Other Hazardous Materials

APPENDICES

Appendix A	Asbestos Analytical Laboratory Reports and Chains of Custody
Appendix B	Lead Analytical Laboratory Reports and Chains of Custody
Appendix C	Licenses
Appendix D	Drawing

1. INTRODUCTION

SLR International Corporation (SLR) conducted a Hazardous Materials survey (Survey) at the former Riley Lumber building located at 6 Mountain Avenue in Bloomfield, Connecticut (the "Site") on March 17, 2022. Per the request of the Town of Bloomfield, the assessment only concentrated on the possible presence of hazardous materials associated with the planned demolition (further known as the Project Area). Results of the assessment has been summarized and included in this report.

BUILDING DESCRIPTION

The approximately 4,800 square feet (SF) circa 1933 one-story structure was constructed atop stone/brick foundation. Building spaces include, but are not limited to, offices, mechanical rooms, and bathrooms. Finished materials SLR viewed within the Project Area were clapboard perimeter wall system, 12" & 9" vinyl tile floor systems, suspended ceiling tile systems, and a metal roof system.

2. REGULATORY OVERVIEW

ASBESTOS

United States Environmental Protection Agency (USEPA) regulation 40 CFR 61, Subpart M, National Emission Standards for Hazardous Air Pollutants (NESHAP) regulates asbestos fiber emissions during demolition or demolition activities and asbestos waste disposal practices. It also requires the identification and classification of existing building materials prior to demolition activities. Under NESHAP, asbestos-containing building materials are classified as either friable, Category I non-friable, or Category II non-friable ACM. Friable materials are those that, when dry, may be crumbled, pulverized, or reduced to powder by hand pressure. Category I non-friable ACM includes packings, gaskets, resilient floor coverings, and asphalt roofing products containing more than 1 percent asbestos. Category II non-friable ACM are any materials other than Category I materials that contain more than 1 percent asbestos.

The Occupational Safety & Health Administration (OSHA) asbestos standard for construction (29 CFR 1926.1101) regulates workplace exposure to asbestos. The OSHA standard requires that employee exposure to airborne asbestos fibers be maintained at or below 0.1 asbestos fibers per cubic centimeter (f/cc) of air as an 8-hour time-weighted average (TWA) and not exceed 1.0 f/cc of air over a 30-minute time period known as an excursion limit (EL). The TWA and EL are known as OSHA's permissible exposure limits (PELs). The OSHA exposure limits (0.1 f/cc) of air as an 8-hour time-weighted average or 1.0 f/cc of air over 30 minutes (EL) for asbestos apply when materials containing 1 percent asbestos or less are disturbed during renovations or demolitions. The OSHA standard classifies construction and maintenance activities that could disturb ACM and specifies work practices and precautions that employers must follow when engaging in each class of regulated work. States that administer their own federally approved state OSHA programs may require additional precautions.

Friable ACMs and Category I and Category II nonfriable ACMs that are in poor condition and have become friable (crushed or pulverized during anticipated renovation or demolition activities) due to drilling, sanding, grinding, cutting, or abrading are considered Regulated Asbestos Containing Materials (RACM).

CT DPH regulations specify that non-friable materials with a "trace" result require the material to be disposed of as asbestos. If the material is friable (i.e., materials that may be easily reduced to a powder by applying hand pressure such as pipe/fitting insulation, plaster coats, etc.) during disturbance/abatement, the USEPA, under the asbestos NESHAP regulation, requires that the material(s) be abated in accordance with the asbestos removal regulations (work to be performed in a controlled environment/containment). Materials containing less than 1% asbestos are not regulated by USEPA for removal practices, unless friable (or made friable during removal operations), at which point the materials are regulated for removal activities through NESHAP. However, the OSHA PEL and TWA over the EL for asbestos apply when materials containing 1% asbestos or less are disturbed during renovations or demolitions. A listing of materials that contain 1% asbestos or less is provided above to enable the demolition contractor to make appropriate decisions concerning compliance issues with applicable OSHA regulations.

Lead-Based Paint (LBP)

Lead is regulated by the USEPA and the OSHA. The USEPA regulates lead use, removal, and disposal, and OSHA regulates worker exposure to lead. The State of Connecticut and USEPA defines LBP as paint, varnish, stain, or other applied coating that contains lead equal to or greater than 1.0 milligrams per cubic centimeter (mg/cm²), 5,000 milligrams per kilogram (mg/kg), or 0.5 percent by dry weight as determined by laboratory analysis. For the purpose of the OSHA lead standard, lead includes metallic lead, all inorganic lead

compounds, and organic lead soaps. The federal OSHA standard does not define the amount of lead in paint that constitutes LBP.

Any disturbance of LBP is subject to the OSHA Lead in Construction Standard, 29 CFR 1926.62. Prior to the disposal of materials generated during building renovation or demolition projects, the USEPA Resource Conservation and Recovery Act (RCRA) regulations require that lead Toxicity Characteristic Leaching Procedure (TCLP) testing be conducted to evaluate whether the waste streams must be disposed of as a lead hazardous material or as general construction debris. Disposal of materials coated with paint containing lead is subject to the USEPA RCRA regulations (40 CFR 260-270). At the present time, federal and state regulations do not necessarily require that materials coated with lead-based paint be removed prior to demolition. However, the Hazardous Waste regulations require that wastes be characterized prior to disposal.

The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to all construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included. The lead-in-construction standard applies to any detectable concentration of lead in paint as even small concentrations of lead can result in unacceptable employee exposures depending upon the method of removal and other workplace conditions.

Employers must assure that no employee will be exposed to lead at concentrations greater than the permissible exposure limit of 50 micrograms per cubic meter ($\mu\text{g}/\text{m}^3$) averaged over an 8-hour period without adequate protection. The OSHA standard also establishes an action level of 30 $\mu\text{g}/\text{m}^3$, which if exceeded triggers certain requirements, including periodic exposure monitoring and medical monitoring.

The TCLP test, which is the appropriate method for characterizing demolition debris for lead content, involves the collection of samples from representative building materials and the analysis of the materials by an accredited laboratory. If the sample results are less than 5.0 milligrams per liter (mg/L) lead, then the demolition waste can be disposed of as nonhazardous construction debris. If the sample results are greater than or equal to 5.0 mg/L lead, then the demolition waste must be disposed of as a hazardous waste.

Polychlorinated Biphenyl

The USEPA has issued a number of fact sheets indicating that PCBs may be present in caulk and other sealant materials used in buildings constructed in the period from 1950 through approximately 1980. PCBs were a common additive to caulk because of their water and chemical resistance, durability, and elasticity. PCBs were added as a plasticizer in caulking used to seal joints between masonry units and around windows. PCBs were used in building materials such as paints, caulks, adhesives, mastics, sealants, and specialty coatings. PCBs are known to leach into existing building substrate materials (existing brick and concrete) adjacent to suspect PCB materials sampled. If suspect building materials sampled are less than 1 part per million (ppm), substrate sampling is not necessary. Disposal of substrate materials containing PCBs at concentrations of 1 to 50 ppm will require disposal at an approved solid waste landfill; concentrations above 50 ppm will require disposal at a USEPA Toxic Substances Control Act (TSCA) approved landfill.

Other Hazardous Materials

Connecticut solid waste regulations prohibit the disposal of PCB-containing ballasts in regular or solid waste landfills. These ballasts must be disposed of at an incineration/recycling facility. Approximately 25 percent of ballasts manufactured after 1979 contain di (2-ethylhexyl) phthalate (DEHP), a regulated substance under the USEPA Superfund regulations. DEHP-contaminated ballasts must be disposed of in the same manner as PCB-contaminated ballasts. Fluorescent light tubes, which contain mercury, are prohibited from disposal at in-state landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs and ballasts at an approved recycling facility.

3. FIELD ACTIVITIES

ASBESTOS

The asbestos survey was performed by SLR's Connecticut-licensed asbestos inspector (license provided in Appendix C), Mr. Ryan Rouillard on March 17, 2022. SLR established an appropriate sampling plan of materials to be tested. SLR then performed sampling of those materials to generally meet the protocols established in USEPA regulation 40 CFR 763. Access to the building and areas of interest was provided by the Town of Bloomfield personnel.

Sample Collection

Random samples of suspect ACM were collected in each homogeneous area utilizing equipment such as, but not limited to, ladders and hand tools (*i.e.*, sledgehammers, screw-drivers, chisels, knives, flashlights, gloves, and prybars). Bulk asbestos samples were collected using wet methods, as applicable, to reduce the potential for fiber release. Samples were placed in sealable containers and labeled with unique sample numbers using an indelible marker.

Sample Analysis

Suspect asbestos bulk samples (30) were submitted under chain of custody (COC) to EMSL Analytical, Inc. (EMSL) for analysis as part of this Asbestos Survey. Samples were analyzed by polarized light microscopy (PLM) with dispersion staining techniques per USEPA's Method for the Determination of Asbestos in Bulk Building Materials (600/R-93-116). The laboratory was instructed to analyze samples from each homogeneous area until the first sample containing asbestos was identified (*i.e.*, stop positive protocol). EMSL is accredited by the State of Connecticut for asbestos bulk sample analysis. The percentage of asbestos, where present, was determined by microscopic visual estimation. EMSL separated out multiple layers from some of the materials submitted and used the "stop at first positive" protocol; consequently, a total of 23 samples were analyzed. A copy of the EMSL laboratory analytical report and SLR's COC documentation are provided in Appendix A.

LEAD-BASED PAINT (LBP) SAMPLE COLLECTION

SLR conducted a screening for lead-based paints by collecting two paint chip samples from various exterior suspect painted surfaces. A summary of the LBP samples collected, and analytical results is provided in Appendix B.

HAZARDOUS MATERIALS

The purpose of this evaluation was to obtain information for the potential presence of hazardous materials that require removal and disposal prior to decommissioning the pool mechanical equipment. SLR conducted a visual observation of the pool mechanical equipment to identify suspect hazardous materials that may require removal and disposal prior to renovation activities.

Various hazardous materials are commonly found in a variety of building equipment. These materials were not tested to confirm the assumed hazard and will require the contractor to characterize the wastes prior to disposal to an appropriate recycler/landfill.

No other environmental assessment/sampling was conducted as part of the scope of work for this Survey.

4. FINDINGS

ASBESTOS

The materials listed in the table below include samples taken as part of this survey and have been determined to contain asbestos in concentrations equal to or greater than 1 percent (%).

Table 1 - Identified Asbestos-Containing Materials and Estimated Quantities

Material Description	Location and Estimated Quantity ¹	Asbestos Analytical Result
12" White Mottle Floor Tile	Baths - Floor – 120 SF	3%
9" Green Floor Tile		3%
9" Gray Floor Tile	Front Office - Floor – 400 SF	3%
Black Adhesive		10%
Black Cement		12%
Black Sheathing	Storage Building - Under Roof Panels – 6,000 SF	10%
Silver Asphalt Shingle ²	Deteriorated Building (Back Lot) - Roof – 200 SF	5%

NOTE: SF = Square Feet, LF = Linear Feet

¹Estimated quantities are based on a cursory field evaluation of the Site building, and actual quantities may vary significantly, especially due to ACMs being present in hidden areas not evaluated as part of this survey, covered by loose items, and/or inaccessible areas discovered during this survey (such as below-grade/below concrete floor slabs).

²Material has contaminated surrounding soils.

LEAD PAINT SURVEY

The visual assessment found the condition of the painted surfaces to be generally intact in the buildings with localized damage on surfaces. The lead samples that were detected at concentrations above 0.5% (by weight) are provided in the table below.

Table 2 - LBP Results

Sample ID	Location	Result
1L	Exterior Red Paint	0.84

OTHER HAZARDOUS MATERIALS

Various hazardous materials are commonly found in a variety of building equipment. The equipment observed during the Survey and the types of common hazardous materials contained in that equipment are shown in the table below with estimated quantities. These materials were not tested to confirm the assumed hazard and will require the contractor to characterize prior to disposal.

Table 3

Item	Common Hazard	Estimated Quantity
4' Fluorescent Light Bulb	Mercury	8
Fluorescent Light Ballast	PCB	8
Heater Unit (Empire)	Oil	1
Switch Panel (GE)	PCB	1

Item	Common Hazard	Estimated Quantity
Heater (Vanguard)	Oil	1
Air Conditioners	Oil, CFC	2
Various Containerized Paints	Various	15
Heater (UL)	Oil	2
Copier (Cannon)	Oil	1
Mercury Thermostat	Mercury	2
Fire Extinguisher	Various	2
Switchbox (Arrow Hart and Hegeman)	Oil	1

5. CONCLUSIONS

The results of the survey indicate that asbestos and other hazardous materials are present within the building spaces and must be abated prior to building demolition.

ASBESTOS

While the Survey activities conducted by SLR sought to identify, to the best of our ability, the materials that will require abatement, it is possible that certain other ACMs located in discrete and/or inaccessible areas may ultimately be discovered during demolition activities. Should such materials be encountered, the demolition contractor should assume them to contain asbestos and remove and dispose of them accordingly.

Project Area inaccessible areas (materials must be assumed until sampled) include, but are not limited to, the following:

- Below-grade materials (*i.e.*, utility piping, slab/foundation mastics, etc.);
- Within walls and beneath floors; and,
- Within mechanical units (*i.e.*, boilers, HVAC, etc.), electrical and plumbing systems.

Connecticut regulations require that any asbestos-related activity conducted be performed by appropriately trained and licensed personnel. Asbestos abatement should be in accordance with a project design prepared by a Connecticut-licensed project designer. Third-party air monitoring should be conducted during abatement activities and visual/air clearances must be conducted at the completion of each/all abatement activities.

The owner or operator of a facility must provide EPA with written notification of planned removal activities at least 10 working days prior to the commencement of asbestos abatement activities.

LEAD

In areas where demolition or renovations are to occur, and lead is present, the demolition debris waste stream should be further analyzed during segregation for compliance with EPA, state and local regulations to ensure proper disposal. TCLP testing should be performed to characterize all waste prior to disposal. TCLP testing can be performed prior to waste segregation but results may not be indicative of the actual waste streams produced during demolition.

Demolition workers should be trained and protected in accordance with OSHA regulation 29 CFR 1926.62 which state in part:

This section applies to all construction work where an employee may be occupationally exposed to lead. All construction work excluded from coverage in the general industry standard for lead by 29 CFR 1910.1025(a)(2) is covered by this standard. Construction work is defined as work for construction, alteration and/or repair, including painting and decorating. It includes but is not limited to the following:

- Demolition or salvage of structures where lead or materials containing lead are present;
- Removal or encapsulation of materials containing lead;

- New construction, alteration, repair, or renovation of structures, substrates, or portions thereof that contain lead, or materials containing lead.
- Handlers of salvageable materials and the treatment/disposal facility must be informed of the material's lead content. All personnel involved must be trained in personal protection and proper work practice procedures in accordance with OSHA regulations.
- All waste contaminated with lead paint should be disposed of in accordance with all state, local, and federal regulations.

Prior to the disposal of LCP materials generated during building demolition activities, USEPA RCRA regulations require that lead toxicity characteristic leaching procedure (TCLP) testing be conducted to determine whether the waste streams must be disposed of as a lead hazardous material or as general construction debris. If results of the testing are greater than 5.0 mg/L, then the material must be considered a hazardous waste.

PCBs

Disposal of finish and substrate materials, and electrical equipment, containing PCBs at concentrations of 1 to 50 ppm will require disposal at an appropriate landfill that accepts this waste; concentrations above 50 ppm will require disposal at a USEPA TSCA-approved landfill.

Prior to conducting demolition activities that will impact suspect PCB materials at the Site, sampling should be conducted to allow for safe removal planning and site practices, as well as to meet appropriate disposal requirements. This sampling may be conducted by the demolition contractor; however, the sampling should be conducted prior to bidding for budget purposes. Additional contractor characterization may be necessary prior to removal/disposal of materials not yet characterized.

HAZARDOUS MATERIALS

Prior to decommissioning activities that will impact suspect hazardous materials associated with the pool mechanical equipment, a qualified contractor should be retained to properly characterize, remove, and dispose/recycle the hazardous materials.

RENOVATION/DEMOLITION RECOMMENDATIONS

In addition to the above related to ACM and hazardous materials the following should be considered as part of the renovation and/or demolition activities.

- Develop demolition plan/specification for the removal of the pool and associated piping and equipment and have reviewed by structural engineer to ensure the planned activity does not impact the integrity of the building.
- Prior to beginning work install a barrier to minimize the transmission of dust or debris to the occupied area of the building.
- Locate, identify, disconnect, and seal or cap off utilities serving pool area and mechanical spaces to be renovated/demolished.
- Restore site in accordance with the specifications.
- Obtain applicable permits.

COST ESTIMATE

MATERIAL DESCRIPTION MATERIAL	MATERIAL LOCATION	ESTIMATED QUANTITY ¹		ESTIMATED UNIT COST		ESTIMATED COST
12" White Mottle Floor Tile	Bath Floors	120	SF	\$5	SF	\$600
9" Green Floor Tile	Front Office Floor	400	SF	\$8	SF	\$3,200
9" Gray Floor Tile						
Black Adhesive						
Black Cement	Storage Building - Under Roof Panels	6,000	SF	\$8	SF	\$4,800
Black Sheathing						
Silver Asphalt Shingle	Deteriorated Building (Back Lot) - Roof	200	SF	\$9	SF	\$1,800 ²

¹Estimated quantities are based on a cursory field evaluation of the Site building, and actual quantities may vary significantly, especially due to ACMs being present in hidden areas not evaluated as part of this survey, covered by loose items, and/or inaccessible areas discovered during this survey (such as below-grade/below concrete floor slabs).

²Material has contaminated surrounding soils and may increase the estimated cost to remediate.

6. RELIANCE

This report is for the exclusive use of the Town of Bloomfield for the project being discussed. Reliance by any other party on this report is prohibited without the written authorization of SLR.

7. GENERAL COMMENTS

This Survey (limitations and/or inaccessible areas discussed above) was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same locale. The results, findings, conclusions, and recommendations expressed in this Survey are based on conditions observed during the assessment. The information contained in this Survey is relevant to the dates on which the survey was performed and should not be relied upon to represent conditions at a later date.

This Survey is not a bidding document. Contractors or consultants reviewing this Survey must draw their own conclusions regarding further investigation or remediation deemed necessary. SLR does not warrant the work of regulatory agencies, laboratories, or other third parties supplying information that may have been used in the preparation of this Survey. No warranty, express or implied, is made.

It is important to note that we cannot guarantee that all asbestos or potentially hazardous materials have been identified. In addition, ACM's have often been used in areas where detection is difficult until renovation, demolition, and/or asbestos abatement work begins and allows access to these remote areas.

In accordance with federal regulations stated above, the materials not representatively sampled or present in the inaccessible area(s) listed above must be assumed as ACM until appropriate characterization is performed of such materials, and they are proven to be non-ACM by an appropriately accredited laboratory.

LIMITATIONS

1. SLR's asbestos/hazardous materials evaluations were performed in accordance with the client's requests and generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area, and SLR observed the degree of care and skill generally exercised by other consultants under similar circumstances and conditions. SLR's findings and conclusions must be considered not as scientific certainties but rather as our professional opinion concerning the significance of the data gathered during the course of the asbestos/hazardous materials evaluations. No other warranty, express or implied, is made. Specifically, SLR does not and cannot represent that the site contains no ACMs, hazardous materials, or other latent condition beyond that observed by SLR during its asbestos/hazardous materials evaluations.
2. This report, which present our findings, shall not be used as a bid document/work plan, or in place of a work plan, for conducting asbestos abatement. When an asbestos abatement specification/work plan is prepared, the State of Connecticut requires that the plan be prepared by a USEPA-certified and Connecticut-Licensed Asbestos Project Designer. SLR recommends that a work plan be prepared by the contractor (as SLR does not determine means and methods for abatement activities) and a bid walk-through be administered by SLR personnel familiar with the on-site asbestos conditions.
3. The observations described in this report were made under the conditions stated herein. The conclusions presented in the reports were based solely upon the services described therein and not on scientific tasks or procedures beyond the proposed scope of services.
4. The conclusions and recommendations contained in this report are based on environmental sampling and visual observations (not including inaccessible areas) and were arrived at in accordance with generally accepted standards of industrial hygiene practice. No other warranty, express or implied, is made.
5. Where sample analyses were conducted by an outside laboratory, SLR has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
6. The purpose of this report was to assess the physical characteristics of the subject Site building spaces surveyed with respect to the presence of asbestos in the Site building. No specific attempt was made to check on the compliance by any party with federal, state, or local laws and regulations.
7. Observations were made of the Site buildings as indicated within the reports. While it was SLR's intent to conduct a thorough Survey, it is important to note that we cannot guarantee that all asbestos or potentially hazardous materials within the surveyed areas have been identified. ACMs have frequently been used in areas where detection is difficult until renovation, demolition, and/or asbestos abatement work begins and allows access to these remote areas. All quantities of suspect hazardous materials provided as part of this Survey are estimates based upon our observations and rough measurements. The quantities should not be considered as anything other than estimates for planning purposes.

APPENDIX A

ASBESTOS ANALYTICAL LABORATORY REPORTS AND CHAINS OF CUSTODY

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202255

Customer ID: MMAC42

Customer PO:

Project ID:

Attention: Keith Allard
SLR International Corporation
2 Commerce Drive, Suite 110
Bedford, NH 03110

Phone: (603) 289-1951

Fax:

Received Date: 03/30/2022 9:40 AM

Analysis Date: 04/06/2022

Collected Date:

Project: 144.12571.00015.0050 / Riley Lumber

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos
			% Fibrous	% Non-Fibrous	% Type
01A 132202255-0001	Office Interior - Debris on Floors - Blown-in Insulation	Gray Fibrous Homogeneous	98% Cellulose	2% Non-fibrous (Other)	None Detected
01B 132202255-0002	Barn/Rear Storage - Debris on Floor - Blown-in Insulation	Gray Fibrous Homogeneous	98% Cellulose	2% Non-fibrous (Other)	None Detected
02A 132202255-0003	Exterior Wood Windows (4x6) x6 Windows & 1 Large Window - White Glaze	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
02B 132202255-0004	Exterior Wood Windows (4x6) x6 Windows & 1 Large Window - White Glaze	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
03A 132202255-0005	Baths - Suspended Ceiling - 2x2 Pinhole Ceiling Tile	Gray/White Fibrous Homogeneous	50% Cellulose 35% Min. Wool	15% Non-fibrous (Other)	None Detected
03B 132202255-0006	Baths - Suspended Ceiling - 2x2 Pinhole Ceiling Tile	Gray/White Fibrous Homogeneous	50% Cellulose 35% Min. Wool	15% Non-fibrous (Other)	None Detected
04A 132202255-0007	Baths - Floor - 12" White Mottle Floor Tile	White Non-Fibrous Homogeneous		97% Non-fibrous (Other)	3% Chrysotile
04B 132202255-0008	Baths - Floor - 12" White Mottle Floor Tile				Positive Stop (Not Analyzed)
05A 132202255-0009	Baths - 12" White Mottle Floor Tile - Black Adhesive (on Wood)	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
05B 132202255-0010	Baths - 12" White Mottle Floor Tile - Black Adhesive (on Wood)	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
06A 132202255-0011	Front Office - Floor - 9" Green Floor Tile	Green Non-Fibrous Homogeneous		97% Non-fibrous (Other)	3% Chrysotile
06B 132202255-0012	Front Office - Floor - 9" Green Floor Tile				Positive Stop (Not Analyzed)
07A 132202255-0013	Front Office - Floor - 9" Gray Floor Tile	Gray Non-Fibrous Homogeneous		97% Non-fibrous (Other)	3% Chrysotile
07B 132202255-0014	Front Office - Floor - 9" Gray Floor Tile				Positive Stop (Not Analyzed)

Initial report from: 04/06/2022 12:48:16

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202255

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
08A 132202255-0015	Front Office - 9" Gray Floor Tile - Black Adhesive	Black Non-Fibrous Homogeneous		90% Non-fibrous (Other)	10% Chrysotile
08B 132202255-0016	Front Office - 9" Gray Floor Tile - Black Adhesive				Positive Stop (Not Analyzed)
09A 132202255-0017	Storage Building - Roof - Black Cement	Black Non-Fibrous Homogeneous		88% Non-fibrous (Other)	12% Chrysotile
09B 132202255-0018	Storage Building - Roof - Black Cement				Positive Stop (Not Analyzed)
10A 132202255-0019	Storage Building - Under Panels - Black Sheathing	Black Fibrous Homogeneous	60% Cellulose	30% Non-fibrous (Other)	10% Chrysotile
10B 132202255-0020	Storage Building - Under Panels - Black Sheathing				Positive Stop (Not Analyzed)
11A 132202255-0021	Shed - Roof - Silver Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
11B 132202255-0022	Shed - Roof - Silver Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
12A 132202255-0023	Shed - Roof - Beneath Silver Asphalt Shingle - Black Paper	Black Fibrous Homogeneous	75% Cellulose	25% Non-fibrous (Other)	None Detected
12B 132202255-0024	Shed - Roof - Beneath Silver Asphalt Shingle - Black Paper	Black Fibrous Homogeneous	75% Cellulose	25% Non-fibrous (Other)	None Detected
13A 132202255-0025	Sawdust Hopper Bumpout - Roof - Multi Colored Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
13B 132202255-0026	Sawdust Hopper Bumpout - Roof - Multi Colored Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
14A 132202255-0027	Deteriorated Building (Back Lot) - Roof - Silver Asphalt Shingle	Gray/Black Non-Fibrous Homogeneous	50% Cellulose	45% Non-fibrous (Other)	5% Chrysotile
14B 132202255-0028	Deteriorated Building (Back Lot) - Roof - Silver Asphalt Shingle				Positive Stop (Not Analyzed)
15A 132202255-0029	Rear Lot - Debris Pile - Green Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected
15B 132202255-0030	Rear Lot - Debris Pile - Green Asphalt Shingle	Gray/Black Fibrous Homogeneous	20% Glass	80% Non-fibrous (Other)	None Detected

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202255

Customer ID: MMAC42

Customer PO:

Project ID:

Analyst(s)

John McCarthy (23)

Steve Grise, Laboratory Manager
or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-139, VT AL998919, ME LB-0039

Initial report from: 04/06/2022 12:48:16

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077PHONE: (800) 220-3675
EMAIL: CinnAsblab@EMSL.com

132202255

Customer Information	Customer ID: MMAC42	Billing ID:		
	Company Name: SLR International Corporation	Company Name: SLR International Corporation		
	Contact Name: Keith Allard	Billing Contact: Keith Allard		
	Street Address: 2 Commerce Drive, Suite 110	Street Address: 2 Commerce Drive, Suite 110		
	City, State, Zip: Bedford, NH 03110	Country: US	City, State, Zip: Bedford, NH 03110	Country: US
	Phone: 603 289-1951	Phone: 603 289-1951		
Email(s) for Report: kallard@slrconsulting.com	Email(s) for Invoice: kallard@slrconsulting.com			

Project Information

Project Name/No: 144.12571.00015.0050 - Riley Lumber	US State where samples collected: <i>CT</i>	State of Connecticut (CT) must select project location: <input checked="" type="checkbox"/> Commercial (Taxable) <input type="checkbox"/> Residential (Non-Taxable)
EMSL LIMS Project ID: (If applicable, EMSL will provide)	Purchase Order:	
Sampled By Name: Ryan Rouillard	Sampled By Signature: <i>Ryan Rouillard</i>	No. of Samples in Shipment: <i>30</i>
<input type="checkbox"/> 3 Hour <input type="checkbox"/> 6 Hour <input type="checkbox"/> 24 Hour <input type="checkbox"/> 32 Hour <input type="checkbox"/> 48 Hour <input type="checkbox"/> 72 Hour <input type="checkbox"/> 96 Hour <input checked="" type="checkbox"/> 1 Week <input type="checkbox"/> 2 Week		

Please call ahead for large projects and/or turnaround times 6 Hours or Less. *32 Hour TAT available for select tests only; samples must be submitted by 11:30am.

Turn-Around-Time (TAT)

PLM - Bulk (reporting limit)	Test Selection	TEM - Bulk
<input checked="" type="checkbox"/> PLM EPA 600/R-93/116 (<1%)	<input type="checkbox"/> TEM - Bulk	
<input type="checkbox"/> PLM EPA NOB (<1%)	<input type="checkbox"/> TEM EPA NOB	
<input type="checkbox"/> POINT COUNT	<input type="checkbox"/> NYS NOB 198.4 (Non-Friable-NY)	
<input type="checkbox"/> 400 (<0.25%) <input type="checkbox"/> 1,000 (<0.1%)	<input type="checkbox"/> TEM EPA 600/R-93/116 w Milling Prep (0.1%)	
POINT COUNT w/ GRAVIMETRIC	Other Tests (please specify)	
<input type="checkbox"/> 400 (<0.25%) <input type="checkbox"/> 1,000 (<0.1%)	<input checked="" type="checkbox"/> Positive Stop - Clearly Identified Homogeneous Areas (HA)	
<input type="checkbox"/> NIOSH 9002 (<1%)		
<input type="checkbox"/> NYS 198.1 (Friable - NY)		
<input type="checkbox"/> NYS 198.6 NOB (Non-Friable - NY)		
<input type="checkbox"/> NYS 198.8 (Vermiculite SM-V)		

Sample Number	HA Number	Sample Location	Material Description
1 A		OFFICE Interior - Debris after Blown-In Insulation	
↓ B		BARN Rear Storage - Debris on floor	↓
2 A		Ext. wood windows (4x6)x6 windows + 1 large window (also on ground)	white glaze
↓ B		Baths - Suspended ceiling	2x2 pin hole FT
3 A		- Floor	white FT
↓ B		- 12" white mottle FT	12" white mottle FT
4 A		- 12" white mottle FT	white mottle FT
↓ B		Black adhesive (on wood)	↓
5 A			
↓ B			

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Method of Shipment:

Relinquished by: *Keith Allard*

Relinquished by:

Sample Condition Upon Receipt:

Received by: *RECD 03/21/2022 MAR 30 2022*Received by: *EMSL-BOSTON*

Controlled Document - Asbestos Bulk R5 03/18/2021

 AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

FT = Floor tile

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information.

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Sample Number	HA Number	Sample Location	Material Description
06 A		Front office - Floor	9" Green FF Floor tile
↓ B			
07 A		Checkered FF floor	9" Gray FF Floor tile
↓ B			
08 A		- 9" GRAY FF plastic	Black adhesive
↓ B		9" Gray FF plastic	
09 A		Storage Building - Roof	Black cement
↓ B			
10 A		- under panels	Black Sheathing
↓ B			
11 A		Shed - Roof	Silver asphalt shingle
↓ B			
12 A		- beneath Silver asphalt shingle	Black paper
↓ B			
13 A		Sawdust hopper bumpout - Roof	Multi-colored asphalt shingle
↓ B			
14 A		Deteriorated Bldg (Backlot) - Roof	Silver asphalt shingle
↓ B			
15 A		Rear lot - Debris pile	Green asphalt shingle
↓ B			

Method of Shipment:

Sample Condition Upon Receipt

Relinquished by

Date/Time

Received 10

Date/Time

Relinquished by

Date/Time

Received by:

Date/Time

Controlled Document - Asbestos Bulk R5 03/18/2021

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

2022

2023-03-20

APPENDIX B

LEAD ANALYTICAL LABORATORY REPORTS AND CHAINS OF CUSTODY

EMSL Analytical, Inc.

528 Mineola Avenue, Carle Place, NY 11514

Phone/Fax: (516) 997-7251 / (516) 997-7528

<http://www.EMSL.com>carleplacelab@emsl.com

EMSL Order:	062206188
CustomerID:	MMAC42
CustomerPO:	
ProjectID:	

Attn: **Keith Allard**
SLR International Corporation
2 Commerce Drive, Suite 110
Bedford, NH 03110

Phone: (203) 271-1773
Fax:
Received: 3/31/2022 10:44 AM
Collected: 3/17/2022

Project: 144.12571.00015.0050-Riley Lumber

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

<i>Client Sample Description</i>	<i>Lab ID</i>	<i>Collected</i>	<i>Analyzed</i>	<i>Lead Concentration</i>
1L	062206188-0001	3/17/2022	4/7/2022 Site: Exterior White Paint	0.33 % wt
2L	062206188-0002	3/17/2022	4/7/2022 Site: Exterior Red Paint	0.84 % wt

Dominique Iaccarino, Chemistry Lab Manager
or other approved signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.

* Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.008% wt based on the minimum sample weight per our SOP. "<" (less than) result signifies the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Carle Place, NY Lab ID 102344 is accredited by AIHA-LAP, LLC in the env. accreditation program for Lead in Paint, CT PH-0249, CA ELAP 2339

Initial report from 04/07/2022 09:59:53

Lead Chain of Custody

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077

062206188

PHONE: (800) 220-3675

EMAIL: CinnaminsonLeadLab@emsl.com

Customer Information	Customer ID: MMAC42	Billing ID: <input type="text"/>
	Company Name: SLR International Corporation	Company Name: SLR International Corporation
	Contact Name: Keith Allard	Billing Contact: Keith Allard
	Street Address: 2 Commerce Drive, Suite 110	Street Address: 2 Commerce Drive, Suite 110
	City, State, Zip: Bedford, NH 03110	Country: US
	Phone: 603 289-1951	Phone: 603 289-1951
Email(s) for Report: kallard@slrconsulting.com	Email(s) for Invoice: kallard@slrconsulting.com	

Project Name/No: 144.12571.00015.0050 - Riley Lumber		Purchase Order: <input type="text"/>
EMSL LIMS Project ID: (If applicable, EMSL will provide)		US State where samples collected: CT
Sampled By Name: <input type="text"/>		State of Connecticut (CT) must select project location: <input checked="" type="checkbox"/> Commercial (Taxable) <input type="checkbox"/> Residential (Non-Taxable)
Sampled By Signature:		No. of Samples in Shipment: 2
Turn-Around-Time (TAT) <input type="checkbox"/> 3 Hour <input type="checkbox"/> 6 Hour <input type="checkbox"/> 24 Hour <input type="checkbox"/> 32 Hour <input type="checkbox"/> 48 Hour <input type="checkbox"/> 72 Hour <input type="checkbox"/> 96 Hour <input checked="" type="checkbox"/> 1 Week <input type="checkbox"/> 2 Week		

Please call ahead for large projects and/or turnaround times 8 Hours or Less. *32 Hour TAT available for selected tests only, samples must be submitted by 11:30am.

MATRIX	METHOD	INSTRUMENT	REPORTING LIMIT	SELECTION
CHIPS <input checked="" type="checkbox"/> % by wt. <input type="checkbox"/> ppm (mg/kg) <input type="checkbox"/> mg/g	SW 846-7000B	Flame Atomic Absorption	0.008% (80ppm)	P <input checked="" type="checkbox"/>
Reporting Limit based on a minimum 0.25g sample weight	SW 846-6010D	ICP-OES	0.0004% (4ppm)	<input type="checkbox"/>
AIR	NIOSH 7082	Flame Atomic Absorption	4µg/filter	Cm <input type="checkbox"/>
	NIOSH 7300M / NIOSH 7303M	ICP-OES	0.5µg/filter	<input type="checkbox"/>
	NIOSH 7300M / NIOSH 7303M	ICP-MS	0.05µg/filter	<input type="checkbox"/>
WIPE <input type="checkbox"/> ASTM <input type="checkbox"/> Non-ASTM *If no box is checked, non-ASTM Wipe is assumed	SW 846-7000B	Flame Atomic Absorption	10µg/wipe	<input type="checkbox"/>
	SW 846-6010D*	ICP-OES	1.0µg/wipe	<input type="checkbox"/>
TCLP	SW 846-1311 / 7000B / SM 3111B	Flame Atomic Absorption	0.4 mg/L (ppm)	<input type="checkbox"/>
	SW 846-1311 / SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)	<input type="checkbox"/>
SPLP	SW 846-1312 / 7000B / SM 3111B	Flame Atomic Absorption	0.4 mg/L (ppm)	<input type="checkbox"/>
	SW 846-1312 / SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)	<input type="checkbox"/>
TTLA	22 CCR App. II, 7000B	Flame Atomic Absorption	40mg/kg (ppm)	<input type="checkbox"/>
	22 CCR App. II, SW 846-6010D*	ICP-OES	2mg/kg (ppm)	<input type="checkbox"/>
STLC	22 CCR App. II, 7000B	Flame Atomic Absorption	0.4 mg/L (ppm)	<input type="checkbox"/>
	22 CCR App. II, SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)	<input type="checkbox"/>
Soil	SW 846-7000B	Flame Atomic Absorption	40mg/kg (ppm)	<input type="checkbox"/>
	SW 846-6010D*	ICP-OES	2mg/kg (ppm)	<input type="checkbox"/>
Wastewater Unpreserved Preserved with HNO3 <input type="checkbox"/> PH<2	SM 3111B / SW 846-7000B	Flame Atomic Absorption	0.4 mg/L (ppm)	<input type="checkbox"/>
	EPA 200.7	ICP-OES	0.020 mg/L (ppm)	<input type="checkbox"/>
Drinking Water Unpreserved Preserved with HNO3 <input type="checkbox"/> PH<2	EPA 200.5	ICP-OES	0.003 mg/L (ppm)	<input type="checkbox"/>
	EPA 200.8	ICP-MS	0.001 mg/L (ppm)	<input type="checkbox"/>
TSP/SPM Filter	40 CFR Part 50	ICP-OES	12 µg/filter	<input type="checkbox"/>
Other: <input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="text"/>	<input type="checkbox"/>

Sample Number	Sample Location	Volume / Area	Date / Time Sampled
1 L	Exterior white paint	200 SF	3/17/2022
2 L	Exterior Red paint	2640 SF	3/17/2022
P6 Analysis 15. M3/17/22			

Method of Shipment:	Sample Condition Upon Receipt:
Relinquished by:	Date/Time: 3/17/22
Received by:	Date/Time: 3/17/22
Relinquished by:	Date/Time: 3/17/22
Received by:	Date/Time: 3/17/22

APPENDIX C

LICENSES

This is to certify that

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

has completed the requisite training by Video Conference, and has passed an examination for reaccreditation

Asbestos Management Planner Refresher
pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

Course Location

Zoom Video Conference

Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887

November 18, 2021

Course Dates

21-3788-136-226296

November 18, 2021

Examination Date

November 18, 2022

Expiration Date

Certificate Number

Wentzley F

Training Director

This is to certify that

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

has completed requisite training by Video Conference, and has passed an examination for reaccreditation as:

Asbestos Inspector Refresher

pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

Course Location

Zoom Video Conference

Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887

November 18, 2021

Course Dates

21-3601-106-226296

November 18, 2021

Examination Date

November 18, 2022

Expiration Date

Training Director

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

This is to certify that
has completed the requisite training by Video Conference, and has passed an examination for
reaccreditation

Asbestos Designer Refresher

pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

INSTITUTE FOR ENVIRONMENTAL EDUCATION

Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887

October 26, 2021

Course Dates

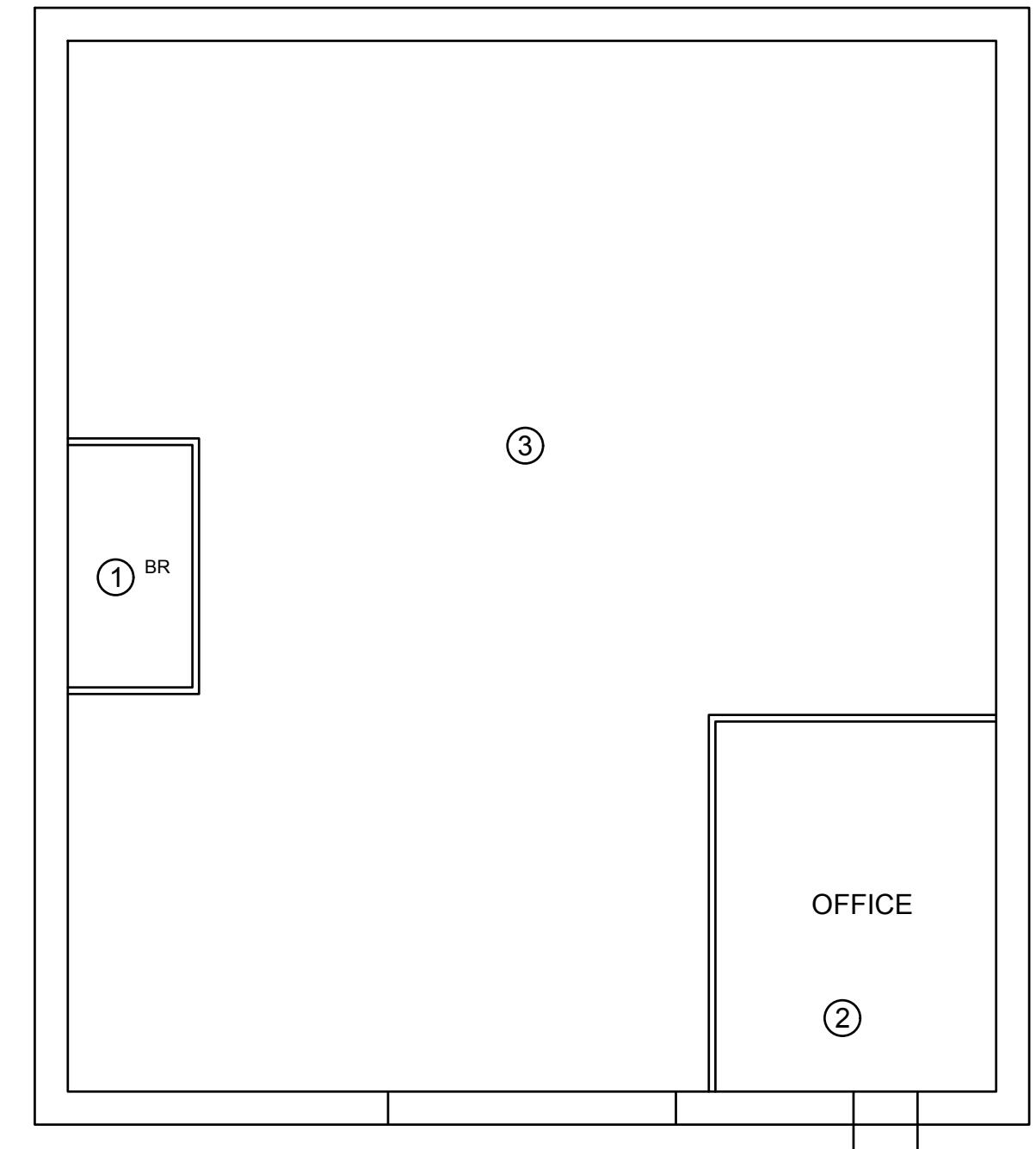
Course Location
Zoom Video Conference

October 26, 2021

Examination Date

October 26, 2022

Expiration Date


Certificate Number

Training Director

APPENDIX D

DRAWING

LEGEND:

Plan #	Material Description	Location
①	12" White Mottle Floor Tile	Bath Floors
②	9" Green & 9" Gray Floor Tile and Black Adhesive	Front Office Floor
③	Black Cement and Black Sheathing	Storage Building - Under Roof Panels
④	Silver Asphalt Shingle	Deteriorated Building (Back Lot) - Roof

REVISIONS		
1	2	3
4	5	6
7	8	9
10	11	12
13	14	15
16	17	18
19	20	21
22	23	24
25	26	27
28	29	30
31	32	33
34	35	36
37	38	39
40	41	42
43	44	45
46	47	48
49	50	51
52	53	54
55	56	57
58	59	60
61	62	63
64	65	66
67	68	69
70	71	72
73	74	75
76	77	78
79	80	81
82	83	84
85	86	87
88	89	90
91	92	93
94	95	96
97	98	99
100	101	102
103	104	105
106	107	108
109	110	111
112	113	114
115	116	117
118	119	120
121	122	123
124	125	126
127	128	129
130	131	132
133	134	135
136	137	138
139	140	141
142	143	144
145	146	147
148	149	150
151	152	153
154	155	156
157	158	159
160	161	162
163	164	165
166	167	168
169	170	171
172	173	174
175	176	177
178	179	180
181	182	183
184	185	186
187	188	189
190	191	192
193	194	195
196	197	198
199	200	201
202	203	204
205	206	207
208	209	210
211	212	213
214	215	216
217	218	219
220	221	222
223	224	225
226	227	228
229	230	231
232	233	234
235	236	237
238	239	240
241	242	243
244	245	246
247	248	249
250	251	252
253	254	255
256	257	258
259	260	261
262	263	264
265	266	267
268	269	270
271	272	273
274	275	276
277	278	279
280	281	282
283	284	285
286	287	288
289	290	291
292	293	294
295	296	297
298	299	300
301	302	303
304	305	306
307	308	309
310	311	312
313	314	315
316	317	318
319	320	321
322	323	324
325	326	327
328	329	330
331	332	333
334	335	336
337	338	339
340	341	342
343	344	345
346	347	348
349	350	351
352	353	354
355	356	357
358	359	360
361	362	363
364	365	366
367	368	369
370	371	372
373	374	375
376	377	378
379	380	381
382	383	384
385	386	387
388	389	390
391	392	393
394	395	396
397	398	399
400	401	402
403	404	405
406	407	408
409	410	411
412	413	414
415	416	417
418	419	420
421	422	423
424	425	426
427	428	429
430	431	432
433	434	435
436	437	438
439	440	441
442	443	444
445	446	447
448	449	450
451	452	453
454	455	456
457	458	459
460	461	462
463	464	465
466	467	468
469	470	471
472	473	474
475	476	477
478	479	480
481	482	483
484	485	486
487	488	489
490	491	492
493	494	495
496	497	498
499	500	501
502	503	504
505	506	507
508	509	510
511	512	513
514	515	516
517	518	519
520	521	522
523	524	525
526	527	528
529	530	531
532	533	534
535	536	537
538	539	540
541	542	543
544	545	546
547	548	549
550	551	552
553	554	555
556	557	558
559	560	561
562	563	564
565	566	567
568	569	570
571	572	573
574	575	576
577	578	579
580	581	582
583	584	585
586	587	588
589	590	591
592	593	594
595	596	597
598	599	600
601	602	603
604	605	606
607	608	609
610	611	612
613	614	615
616	617	618
619	620	621
622	623	624
625	626	627
628	629	630
631	632	633
634	635	636
637	638	639
640	641	642
643	644	645
646	647	648
649	650	651
652	653	654
655	656	657
658	659	660
661	662	663
664	665	666
667	668	669
670	671	672
673	674	675
676	677	678
679	680	681
682	683	684
685	686	687
688	689	690
691	692	693
694	695	696
697	698	699
700	701	702
703	704	705
706	707	708
709	710	711
712	713	714
715	716	717
718	719	720
721	722	723
724	725	726
727	728	729
730	731	732
733	734	

**PROSSER LIBRARY
1 TUNXIS AVENUE
BLOOMFIELD, CT 06002**

Hazardous Materials Survey

Prepared for:
Town of Bloomfield
Client Ref: SLR # 144.12571.00015.0050

April 15, 2022

SLR

The logo for SLR (Saski, Lutz & Ritter) features the acronym 'SLR' in a large, bold, white sans-serif font. To the right of the 'R', there is a circular emblem consisting of a stylized 'S' and 'R' intertwined with a horizontal line.

Hazardous Materials Survey

Prepared for:

Town of Bloomfield
800 Bloomfield Avenue
Bloomfield CT 06002

This document has been prepared by SLR International Corporation (SLR). The material and data in this report were prepared under the supervision and direction of the undersigned.

Ryan D. Rouillard
Principal, Building Sciences

Keith Allard
Associate Building Sciences Specialist

CONTENTS

1. INTRODUCTION	3
2. REGULATORY OVERVIEW	4
3. FIELD ACTIVITIES.....	6
4. ASBESTOS FINDINGS	8
5. CONCLUSIONS	11
6. RELIANCE.....	15
7. GENERAL COMMENTS.....	16

No table of figures entries found. TABLES

Table 1	Identified Asbestos-Containing Materials and Estimated Quantities
Table 2	LBP
Table 3	Other Hazardous Materials

APPENDICES

Appendix A	Asbestos Analytical Laboratory Reports and Chains of Custody
Appendix B	Lead Analytical Laboratory Reports and Chains of Custody Licenses
Appendix C	Polychlorinated Biphenyl Analytical Laboratory Reports Photographs Licenses
Appendix D	Licenses
Appendix E	Drawing
Appendix F	TRC Report

1. INTRODUCTION

SLR International Corporation (SLR) conducted a Hazardous Materials survey (Survey) at the Prosser Library located at 1 Tunxis Avenue in Bloomfield, Connecticut (the "Site") on March 17, 2022. Per the request of the Town of Bloomfield, the assessment only concentrated on the possible presence of hazardous materials associated with the planned demolition (further known as the Project Area). SLR utilized previous analytical results from TRC's sampling conducted in March, November and December of 2017. Results of the assessment has been summarized and included in this report.

BUILDING DESCRIPTION

The approximately 19,750 square feet (SF) circa 1964 two and a half-story structure was constructed atop poured concrete. Building spaces include, but are not limited to, offices, mechanical rooms, bathrooms, and recreation areas. Finished materials SLR viewed within the Project Area were concrete/brick perimeter wall system, gypsum board wall system, carpet, 12"x12" vinyl tile floor systems, suspended ceiling tile systems, ceramic wall/floor tile systems, and a slate roof system.

2. REGULATORY OVERVIEW

ASBESTOS

United States Environmental Protection Agency (USEPA) regulation 40 CFR 61, Subpart M, National Emission Standards for Hazardous Air Pollutants (NESHAP) regulates asbestos fiber emissions during demolition or demolition activities and asbestos waste disposal practices. It also requires the identification and classification of existing building materials prior to demolition activities. Under NESHAP, asbestos-containing building materials are classified as either friable, Category I non-friable, or Category II non-friable ACM. Friable materials are those that, when dry, may be crumbled, pulverized, or reduced to powder by hand pressure. Category I non-friable ACM includes packings, gaskets, resilient floor coverings, and asphalt roofing products containing more than 1 percent asbestos. Category II non-friable ACM are any materials other than Category I materials that contain more than 1 percent asbestos.

The Occupational Safety & Health Administration (OSHA) asbestos standard for construction (29 CFR 1926.1101) regulates workplace exposure to asbestos. The OSHA standard requires that employee exposure to airborne asbestos fibers be maintained at or below 0.1 asbestos fibers per cubic centimeter (f/cc) of air as an 8-hour time-weighted average (TWA) and not exceed 1.0 f/cc of air over a 30-minute time period known as an excursion limit (EL). The TWA and EL are known as OSHA's permissible exposure limits (PELs). The OSHA exposure limits (0.1 f/cc) of air as an 8-hour time-weighted average or 1.0 f/cc of air over 30 minutes (EL) for asbestos apply when materials containing 1 percent asbestos or less are disturbed during renovations or demolitions. The OSHA standard classifies construction and maintenance activities that could disturb ACM and specifies work practices and precautions that employers must follow when engaging in each class of regulated work. States that administer their own federally approved state OSHA programs may require additional precautions.

Friable ACMs and Category I and Category II nonfriable ACMs that are in poor condition and have become friable (crushed or pulverized during anticipated renovation or demolition activities) due to drilling, sanding, grinding, cutting, or abrading are considered Regulated Asbestos Containing Materials (RACM).

CT DPH regulations specify that non-friable materials with a "trace" result require the material to be disposed of as asbestos. If the material is friable (*i.e.*, materials that may be easily reduced to a powder by applying hand pressure such as pipe/fitting insulation, plaster coats, etc.) during disturbance/abatement, the USEPA, under the asbestos NESHAP regulation, requires that the material(s) be abated in accordance with the asbestos removal regulations (work to be performed in a controlled environment/containment). Materials containing less than 1% asbestos are not regulated by USEPA for removal practices, unless friable (or made friable during removal operations), at which point the materials are regulated for removal activities through NESHAP. However, the OSHA PEL and TWA over the EL for asbestos apply when materials containing 1% asbestos or less are disturbed during renovations or demolitions. A listing of materials that contain 1% asbestos or less is provided above to enable the demolition contractor to make appropriate decisions concerning compliance issues with applicable OSHA regulations.

Lead-Based Paint (LBP)

Lead is regulated by the USEPA and the OSHA. The USEPA regulates lead use, removal, and disposal, and OSHA regulates worker exposure to lead. The State of Connecticut and USEPA defines LBP as paint, varnish, stain, or other applied coating that contains lead equal to or greater than 1.0 milligrams per cubic centimeter (mg/cm²), 5,000 milligrams per kilogram (mg/kg), or 0.5 percent by dry weight as determined by laboratory analysis. For the purpose of the OSHA lead standard, lead includes metallic lead, all inorganic lead

compounds, and organic lead soaps. The federal OSHA standard does not define the amount of lead in paint that constitutes LBP.

Any disturbance of LBP is subject to the OSHA Lead in Construction Standard, 29 CFR 1926.62. Prior to the disposal of materials generated during building renovation or demolition projects, the USEPA Resource Conservation and Recovery Act (RCRA) regulations require that lead Toxicity Characteristic Leaching Procedure (TCLP) testing be conducted to evaluate whether the waste streams must be disposed of as a lead hazardous material or as general construction debris. Disposal of materials coated with paint containing lead is subject to the USEPA RCRA regulations (40 CFR 260-270). At the present time, federal and state regulations do not necessarily require that materials coated with lead-based paint be removed prior to demolition. However, the Hazardous Waste regulations require that wastes be characterized prior to disposal.

The OSHA Lead Standard for Construction (29 CFR 1926.62) applies to all construction work where an employee may be occupationally exposed to lead. All work related to construction, alteration, or repair (including painting and decorating) is included. The lead-in-construction standard applies to any detectable concentration of lead in paint as even small concentrations of lead can result in unacceptable employee exposures depending upon the method of removal and other workplace conditions.

Employers must assure that no employee will be exposed to lead at concentrations greater than the permissible exposure limit of 50 micrograms per cubic meter ($\mu\text{g}/\text{m}^3$) averaged over an 8-hour period without adequate protection. The OSHA standard also establishes an action level of 30 $\mu\text{g}/\text{m}^3$, which if exceeded triggers certain requirements, including periodic exposure monitoring and medical monitoring.

The TCLP test, which is the appropriate method for characterizing demolition debris for lead content, involves the collection of samples from representative building materials and the analysis of the materials by an accredited laboratory. If the sample results are less than 5.0 milligrams per liter (mg/L) lead, then the demolition waste can be disposed of as nonhazardous construction debris. If the sample results are greater than or equal to 5.0 mg/L lead, then the demolition waste must be disposed of as a hazardous waste.

Polychlorinated Biphenyl

The USEPA has issued a number of fact sheets indicating that PCBs may be present in caulk and other sealant materials used in buildings constructed in the period from 1950 through approximately 1980. PCBs were a common additive to caulk because of their water and chemical resistance, durability, and elasticity. PCBs were added as a plasticizer in caulking used to seal joints between masonry units and around windows. PCBs were used in building materials such as paints, caulks, adhesives, mastics, sealants, and specialty coatings. PCBs are known to leach into existing building substrate materials (existing brick and concrete) adjacent to suspect PCB materials sampled. If suspect building materials sampled are less than 1 part per million (ppm), substrate sampling is not necessary. Disposal of substrate materials containing PCBs at concentrations of 1 to 50 ppm will require disposal at an approved solid waste landfill; concentrations above 50 ppm will require disposal at a USEPA Toxic Substances Control Act (TSCA) approved landfill.

Other Hazardous Materials

Connecticut solid waste regulations prohibit the disposal of PCB-containing ballasts in regular or solid waste landfills. These ballasts must be disposed of at an incineration/recycling facility. Approximately 25 percent of ballasts manufactured after 1979 contain di (2-ethylhexyl) phthalate (DEHP), a regulated substance under the USEPA Superfund regulations. DEHP-contaminated ballasts must be disposed of in the same manner as PCB-contaminated ballasts. Fluorescent light tubes, which contain mercury, are prohibited from disposal at in-state landfills due to their mercury content. The preferred option is for the removal and recycling of the bulbs and ballasts at an approved recycling facility.

3. FIELD ACTIVITIES

ASBESTOS

The asbestos survey was performed by SLR's Connecticut-licensed asbestos inspector (license provided in Appendix D), Mr. Ryan Rouillard on March 17, 2022. SLR established an appropriate sampling plan of materials to be tested. SLR then performed sampling of those materials to generally meet the protocols established in USEPA regulation 40 CFR 763. In addition, SLR utilized previous analytical results from TRC's sampling conducted in March, November and December of 2017 (Appendix F). Access to the building and areas of interest was provided by the Town of Bloomfield personnel.

Sample Collection

Random samples of suspect ACM were collected in each homogeneous area utilizing equipment such as, but not limited to, ladders and hand tools (*i.e.*, sledgehammers, screw-drivers, chisels, knives, flashlights, gloves, and prybars). Bulk asbestos samples were collected using wet methods, as applicable, to reduce the potential for fiber release. Samples were placed in sealable containers and labeled with unique sample numbers using an indelible marker.

Sample Analysis

Suspect asbestos bulk samples (115) were submitted under chain of custody (COC) to EMSL Analytical, Inc. (EMSL) for analysis as part of this Asbestos Survey. Samples were analyzed by polarized light microscopy (PLM) with dispersion staining techniques per USEPA's Method for the Determination of Asbestos in Bulk Building Materials (600/R-93-116). The laboratory was instructed to analyze samples from each homogeneous area until the first sample containing asbestos was identified (*i.e.*, stop positive protocol). EMSL is accredited by the State of Connecticut for asbestos bulk sample analysis. The percentage of asbestos, where present, was determined by microscopic visual estimation. EMSL separated out multiple layers from some of the materials submitted and used the "stop at first positive" protocol; consequently, a total of 108 samples were analyzed. A copy of the EMSL laboratory analytical report and SLR's COC documentation are provided in Appendix A.

LEAD-BASED PAINT (LBP) SAMPLE COLLECTION

SLR conducted a screening for lead-based paints by collecting three paint chip samples from various interior suspect painted surfaces. A summary of the LBP samples collected, and analytical results is provided in Appendix B.

PCB SAMPLE COLLECTION

SLR has assessed interior/exterior areas of the Site building to identify majority-rule building materials suspected of containing PCBs, including but not limited to, paints, caulk/sealant materials, floor mastics, and roof mastics. This testing was conducted as a screening assessment for informational planning purposes.

Samples (3) were collected by cutting the material from the joint/surface with a razor knife equipped with disposable razor blades or scraping the material with a metal scraper equipped with disposable blades. If adjacent media (*e.g.*, concrete or wood) was inadvertently removed in the process of sample collection, this media was physically removed (as best as possible) before the sample was placed in its container. The collected material was transferred by the sampler wearing dedicated nitrile gloves to clean 4-ounce amber glass jars provided by the laboratory. Approximately 5 to 10 grams of material were collected for each sample as required by the laboratory. Dedicated razor blades/scrapers and dedicated nitrile gloves were changed out and disposed of between each sample to prevent cross-contamination.

Each sample was assigned an identification number representative of the location from which it was collected. The material type and location (i.e., walls, roof materials, window frame masonry caulk to building, etc.) and descriptors of the material sampled were recorded on field data sheets during the sampling.

The samples collected were placed on ice in coolers and submitted to Phoenix Environmental Laboratories in Manchester, Connecticut, for analysis of PCBs by USEPA method SW-8082A utilizing the Soxhlet extraction methodology (USEPA Method SW-3540C). Copies of the laboratory analytical reports are presented in Appendix C.

HAZARDOUS MATERIALS

The purpose of this evaluation was to obtain information for the potential presence of hazardous materials that require removal and disposal prior to decommissioning the pool mechanical equipment. SLR conducted a visual observation of the pool mechanical equipment to identify suspect hazardous materials that may require removal and disposal prior to renovation activities.

Various hazardous materials are commonly found in a variety of building equipment. These materials were not tested to confirm the assumed hazard and will require the contractor to characterize the wastes prior to disposal to an appropriate recycler/landfill.

No other environmental assessment/sampling was conducted as part of the scope of work for this Survey.

4. FINDINGS

ASBESTOS

The materials listed in the table below include samples taken as part of this survey and have been determined to contain asbestos in concentrations equal to or greater than 1 percent (%).

Table 1 - Identified Asbestos-Containing Materials and Estimated Quantities

Material Description	Location and Estimated Quantity ¹	Asbestos Analytical Result
Residual Brown Adhesive associated with cove base	Ground floor – throughout children's, storage 106, community room, kitchen, lounge, central passage/hall, workroom, office 103, and vestibule 102, 1 st floor historical 202, South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings – 3,500 SF	2%
Dark Brown Adhesive	Stair treads in Stairwells – 700 SF	
Black Mastic	Exterior Foundation – 2,500 SF ⁵	10%

TRC RESULTS FROM 3/2017 & 12/2017 TESTING²

Yellow mastic with black residual mastic associated with 12" blue speckled floor tile ^{2,4}	Storage Room 106	2%
Black mastic associated with 9" grey with white streaks floor tile	1 st Floor staff room ² , South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings	10%
9" grey with white streaks floor tile ²		2.1%
Yellow gummy carpet glue with black residual mastic ^{2,4}	1 st Floor non-fiction room, Offices 203/204 (beneath carpeting), central stairwell ground floor landings (beneath carpeting)	2%
Light tan cove base glue ^{2,4}	Ground floor – throughout children's, storage 106, community room, kitchen, lounge, central passage/hall, workroom, office 103, and vestibule 102, 1 st floor historical 202, South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings	3%
Grey pliable door/window caulk ²	Exterior, Ground floor rear entry/vestibule doors and two (2) adjacent windows	10%
Light grey hard exterior vent caulk	Exterior, 1 st floor – surrounding North East vent	3%
White cloth flex connector	Ground floor – 2 mechanical rooms, 2 nd floor-mechanical 312 (~10 SF each) and book storage 310 (~6 SF each)	80%
Black tar foundation vapor barrier	Exterior, Ground level – throughout North and East sides foundation	20%

Material Description	Location and Estimated Quantity ¹	Asbestos Analytical Result
Muddled fitting associated with fiberglass pipe insulation	<p><u>Exposed (readily accessible)</u> – Ground floor – storage adjacent to kitchen and mechanical room, 2nd floor – mechanical 312 and book storage 310</p> <p><u>Confirmed and hidden above ceiling tiles</u> – Ground floor – Woorkroom 105 and lounge (above ceiling tiles)</p> <p><u>Presumed</u> – Throughout ground floor rooms/areas and throughout all 1st floor rooms/areas (above ceiling tiles), behind toilet/sink fixtures in all bathrooms on all floors</p>	3%

NOTE: SF = Square Feet, LF = Linear Feet

¹Estimated quantities are based on a cursory field evaluation of the Site building, and actual quantities may vary significantly, especially due to ACMs being present in hidden areas not evaluated as part of this survey, covered by loose items, and/or inaccessible areas discovered during this survey (such as below-grade/below concrete floor slabs).

²TRC did not provide quantities.

³SLR was unable to verify the exact location of any/all material.

⁴Material may no longer exist due to removal activities 8/2021

⁵SLR was not able verify material as excavation was not part of the scope.

LEAD PAINT SURVEY

Based upon the visual observations during the inspection, the condition of painted surfaces was categorized as "Intact," "Fair," or "Poor." The visual assessment found the condition of the painted surfaces to be generally intact in the buildings with localized damage on surfaces. The lead samples that were detected at concentrations above 0.5% (by weight) are provided in the table below.

Table 2 - LBP Results

Sample ID	Location	Result
1P	Stairwell (Olive)	1.4 %

PCB-CONTAINING MATERIALS

The materials sampled were reported as below 1 part per million (PPM)

OTHER HAZARDOUS MATERIALS

Various hazardous materials are commonly found in a variety of building equipment. The equipment observed during the Survey and the types of common hazardous materials contained in that equipment are shown in the table below with estimated quantities. These materials were not tested to confirm the assumed hazard and will require the contractor to characterize prior to disposal.

Table 3

Item	Common Hazard	Estimated Quantity
4' Fluorescent Light Bulb	Mercury	530
2' Fluorescent Light Bulb	Mercury	40
Fluorescent Light Ballast	PCB	350
Fire Strobe	Amerium	8
Emergency Exit Sign/Light	Acid	20
Control Panel for Heater Blower	Oil	2

Item	Common Hazard	Estimated Quantity
Fire Extinguisher	Various	14
Switch Panel (GE and Challenger)	Oil	4
Alarm Panel	Acid	1
Smith Boiler (FA2004-616)	Oil	1
Power Flame Burner (JR30A-12)	Oil	1
Hydraulic Expansion Tank	Oil, PCB	1
Switchbox (Square D)	Oil	2
Taco Motor	Oil	1
Cooling Tower Motor (Wagner)	Oil	1
Chiller Motor (Carrier)	Oil	1
Air Handler #3 (Carrier)	Oil	4
Switchgear (GE)	Oil	2
Main Distribution Panel (TJ Martin)	Oil	1
Safety Switch (Challenger)	Oil	1
Air Purifier (Quest)	Oil	1
AU #1, 2, 4	Oil	3
Hydraulic Door Closure	PCB	19
Powered Hydraulic Door Closure	PCB	3
Exterior Pad Mounted Transformer	PCB	1
Emergency Light	Lead	4
Emergency Exit Sign	Lead	3
Hot Water Heater	Oil	1
Condensing Furnace (Interteck)	Oil	1

5. CONCLUSIONS

The results of the survey indicate that asbestos and other hazardous materials are present within the building spaces and must be abated prior to building demolition.

ASBESTOS

While the Survey activities conducted by SLR sought to identify, to the best of our ability, the materials that will require abatement, it is possible that certain other ACMs located in discrete and/or inaccessible areas may ultimately be discovered during demolition activities. Should such materials be encountered, the demolition contractor should assume them to contain asbestos and remove and dispose of them accordingly.

Project Area inaccessible areas (materials must be assumed until sampled) include, but are not limited to, the following:

- Below-grade materials (*i.e.*, utility piping, slab/foundation mastics, etc.);
- Within walls and beneath floors; and,
- Within mechanical units (*i.e.*, boilers, HVAC, etc.), electrical and plumbing systems.

Connecticut regulations require that any asbestos-related activity conducted be performed by appropriately trained and licensed personnel. Asbestos abatement should be in accordance with a project design prepared by a Connecticut-licensed project designer. Third-party air monitoring should be conducted during abatement activities and visual/air clearances must be conducted at the completion of each/all abatement activities.

The owner or operator of a facility must provide EPA with written notification of planned removal activities at least 10 working days prior to the commencement of asbestos abatement activities.

LEAD

In areas where demolition or renovations are to occur, and lead is present, the demolition debris waste stream should be further analyzed during segregation for compliance with EPA, state and local regulations to ensure proper disposal. TCLP testing should be performed to characterize all waste prior to disposal. TCLP testing can be performed prior to waste segregation but results may not be indicative of the actual waste streams produced during demolition.

Demolition workers should be trained and protected in accordance with OSHA regulation 29 CFR 1926.62 which state in part:

This section applies to all construction work where an employee may be occupationally exposed to lead. All construction work excluded from coverage in the general industry standard for lead by 29 CFR 1910.1025(a)(2) is covered by this standard. Construction work is defined as work for construction, alteration and/or repair, including painting and decorating. It includes but is not limited to the following:

- Demolition or salvage of structures where lead or materials containing lead are present;
- Removal or encapsulation of materials containing lead;

- New construction, alteration, repair, or renovation of structures, substrates, or portions thereof that contain lead, or materials containing lead.
- Handlers of salvageable materials and the treatment/disposal facility must be informed of the material's lead content. All personnel involved must be trained in personal protection and proper work practice procedures in accordance with OSHA regulations.
- All waste contaminated with lead paint should be disposed of in accordance with all state, local, and federal regulations.

Prior to the disposal of LCP materials generated during building demolition activities, USEPA RCRA regulations require that lead toxicity characteristic leaching procedure (TCLP) testing be conducted to determine whether the waste streams must be disposed of as a lead hazardous material or as general construction debris. If results of the testing are greater than 5.0 mg/L, then the material must be considered a hazardous waste.

PCBs

Disposal of finish and substrate materials, and electrical equipment, containing PCBs at concentrations of 1 to 50 ppm will require disposal at an appropriate landfill that accepts this waste; concentrations above 50 ppm will require disposal at a USEPA TSCA-approved landfill.

Prior to conducting demolition activities that will impact suspect PCB materials at the Site, sampling should be conducted to allow for safe removal planning and site practices, as well as to meet appropriate disposal requirements. This sampling may be conducted by the demolition contractor; however, the sampling should be conducted prior to bidding for budget purposes. Additional contractor characterization may be necessary prior to removal/disposal of materials not yet characterized.

HAZARDOUS MATERIALS

Prior to decommissioning activities that will impact suspect hazardous materials associated with the pool mechanical equipment, a qualified contractor should be retained to properly characterize, remove, and dispose/recycle the hazardous materials.

RENOVATION/DEMOLITION RECOMMENDATIONS

In addition to the above related to ACM and hazardous materials the following should be considered as part of the renovation and/or demolition activities.

- Develop demolition plan/specification for the removal of the pool and associated piping and equipment and have reviewed by structural engineer to ensure the planned activity does not impact the integrity of the building.
- Prior to beginning work install a barrier to minimize the transmission of dust or debris to the occupied area of the building.
- Locate, identify, disconnect, and seal or cap off utilities serving pool area and mechanical spaces to be renovated/demolished.
- Restore site in accordance with the specifications.
- Obtain applicable permits.

COST TABLE

MATERIAL DESCRIPTION MATERIAL	MATERIAL LOCATION	ESTIMATED QUANTITY¹		ESTIMATED UNIT COST		ESTIMATED COST
Residual Brown Adhesive	Cove Base (Ground and 1 st Floors)	3,500	SF	\$5	SF	\$17,500
Brown Residual Adhesive						
Dark Brown Adhesive	Stair treads in Stairwells	700	SF	\$10	SF	\$7,000
Black Mastic ⁵	Exterior Foundation	2,500	SF	\$25	SF	\$62,500

TRC RESULTS FROM 3/2017 & 12/2017 TESTING²

Yellow mastic with black residual mastic associated with 12" blue speckled floor tile	Storage Room 106	Material may no longer exist due to removal activities 8/2021					
Black mastic associated with 9" grey with white streaks floor tile	1 st Floor staff room ² South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings	1 st Floor staff room ² South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings	Material may no longer exist due to removal activities 8/2021				
9" grey with white streaks floor tile			See above - SLR's Dark Brown Adhesive				
Yellow gummy carpet glue with black residual mastic	1 st Floor non-fiction room, Offices 203/204 (beneath carpeting), central stairwell ground floor landings (beneath carpeting)	Material may no longer exist due to removal activities 8/2021					
Light tan cove base glue	Ground floor – throughout children's, storage 106, community room, kitchen, lounge, central passage/hall, workroom, office 103, and vestibule 102, 1 st floor historical 202, South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings	Material may no longer exist due to removal activities 8/2021, or it is comingled with Residual Brown Adhesive					
Grey pliable door/window caulk	Exterior, Ground floor rear entry/vestibule doors and two (2) adjacent windows	100	LF	\$20	LF	\$2,000	
Light grey hard exterior vent caulk	Exterior, 1 st floor – surrounding Northeast vent	10	LF	\$20	LF	\$200	

MATERIAL DESCRIPTION MATERIAL	MATERIAL LOCATION	ESTIMATED QUANTITY ¹		ESTIMATED UNIT COST		ESTIMATED COST
White cloth flex connector	Ground floor – 2 mechanical rooms, 2 nd floor- mechanical 312 and book storage 310	4	Units	\$1000	Unit	\$5,000
Black tar foundation vapor barrier ⁵	Exterior, Ground level – throughout North and East sides foundation	See above - SLR's Black Mastic				
Muddled fitting associated with fiberglass pipe insulation	<u>Exposed (readily accessible)</u> – Ground floor – storage adjacent to kitchen and mechanical room, 2 nd floor – mechanical 312 and book storage 310 <u>Confirmed and hidden above ceiling tiles</u> – Ground floor – Woorkroom 105 and lounge (above ceiling tiles) <u>Presumed</u> – Throughout ground floor rooms/areas and throughout all 1 st floor rooms/areas (above ceiling tiles), behind toilet/sink fixtures in all bathrooms on all floors	500	Unit	\$25	Unit	\$12,500

NOTE: SF = Square Feet, LF = Linear Feet

¹Estimated quantities are based on a cursory field evaluation of the Site building, and actual quantities may vary significantly, especially due to ACMs being present in hidden areas not evaluated as part of this survey, covered by loose items, and/or inaccessible areas discovered during this survey (such as below-grade/below concrete floor slabs).

²TRC did not provide quantities.

⁴Material may no longer exist due to removal activities 8/2021

⁵SLR was not able verify material as excavation was not part of the scope.

6. RELIANCE

This report is for the exclusive use of the Town of Bloomfield for the project being discussed. Reliance by any other party on this report is prohibited without the written authorization of SLR.

7. GENERAL COMMENTS

This Survey (limitations and/or inaccessible areas discussed above) was conducted in a manner consistent with the level of care and skill ordinarily exercised by members of the profession currently practicing under similar conditions in the same locale. The results, findings, conclusions, and recommendations expressed in this Survey are based on conditions observed during the assessment. The information contained in this Survey is relevant to the dates on which the survey was performed and should not be relied upon to represent conditions at a later date.

This Survey is not a bidding document. Contractors or consultants reviewing this Survey must draw their own conclusions regarding further investigation or remediation deemed necessary. SLR does not warrant the work of regulatory agencies, laboratories, or other third parties supplying information that may have been used in the preparation of this Survey. No warranty, express or implied, is made.

It is important to note that we cannot guarantee that all asbestos or potentially hazardous materials have been identified. In addition, ACM's have often been used in areas where detection is difficult until renovation, demolition, and/or asbestos abatement work begins and allows access to these remote areas.

In accordance with federal regulations stated above, the materials not representatively sampled or present in the inaccessible area(s) listed above must be assumed as ACM until appropriate characterization is performed of such materials, and they are proven to be non-ACM by an appropriately accredited laboratory.

LIMITATIONS

1. SLR's asbestos/hazardous materials evaluations were performed in accordance with the client's requests and generally accepted practices of other consultants undertaking similar studies at the same time and in the same geographical area, and SLR observed the degree of care and skill generally exercised by other consultants under similar circumstances and conditions. SLR's findings and conclusions must be considered not as scientific certainties but rather as our professional opinion concerning the significance of the data gathered during the course of the asbestos/hazardous materials evaluations. No other warranty, express or implied, is made. Specifically, SLR does not and cannot represent that the site contains no ACMs, hazardous materials, or other latent condition beyond that observed by SLR during its asbestos/hazardous materials evaluations.
2. This report, which present our findings, shall not be used as a bid document/work plan, or in place of a work plan, for conducting asbestos abatement. When an asbestos abatement specification/work plan is prepared, the State of Connecticut requires that the plan be prepared by a USEPA-certified and Connecticut-Licensed Asbestos Project Designer. SLR recommends that a work plan be prepared by the contractor (as SLR does not determine means and methods for abatement activities) and a bid walk-through be administered by SLR personnel familiar with the on-site asbestos conditions.
3. The observations described in this report were made under the conditions stated herein. The conclusions presented in the reports were based solely upon the services described therein and not on scientific tasks or procedures beyond the proposed scope of services.
4. The conclusions and recommendations contained in this report are based on environmental sampling and visual observations (not including inaccessible areas) and were arrived at in accordance with generally accepted standards of industrial hygiene practice. No other warranty, express or implied, is made.
5. Where sample analyses were conducted by an outside laboratory, SLR has relied upon the data provided and has not conducted an independent evaluation of the reliability of these data.
6. The purpose of this report was to assess the physical characteristics of the subject Site building spaces surveyed with respect to the presence of asbestos in the Site building. No specific attempt was made to check on the compliance by any party with federal, state, or local laws and regulations.
7. Observations were made of the Site buildings as indicated within the reports. While it was SLR's intent to conduct a thorough Survey, it is important to note that we cannot guarantee that all asbestos or potentially hazardous materials within the surveyed areas have been identified. ACMs have frequently been used in areas where detection is difficult until renovation, demolition, and/or asbestos abatement work begins and allows access to these remote areas. All quantities of suspect hazardous materials provided as part of this Survey are estimates based upon our observations and rough measurements. The quantities should not be considered as anything other than estimates for planning purposes.

APPENDIX A

ASBESTOS ANALYTICAL LABORATORY REPORTS AND CHAINS OF CUSTODY

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Attention: Keith Allard
SLR International Corporation
2 Commerce Drive, Suite 110
Bedford, NH 03110

Phone: (603) 289-1951

Fax:

Received Date: 03/30/2022 9:40 AM

Analysis Date: 04/07/2022

Collected Date:

Project: 144.12571.00015.0050 / Prosser

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-01A 132202258-0001	Exterior - Roof - Drain Pipe - Black Adhesive	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-01B 132202258-0002	Exterior - Roof - Drain Pipe - Black Adhesive	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-02A 132202258-0003	Exterior - Roof - Membrane & Patch - Black Adhesive	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-02B 132202258-0004	Exterior - Roof - Membrane & Patch - Black Adhesive	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-03A 132202258-0005	Exterior - Beneath Slate Roof - Black Paper	Black Fibrous Homogeneous	60% Cellulose	40% Non-fibrous (Other)	None Detected
P-03B 132202258-0006	Exterior - Beneath Slate Roof - Black Paper	Black Fibrous Homogeneous	60% Cellulose	40% Non-fibrous (Other)	None Detected
P-04A 132202258-0007	Exterior - Edge Valley - Gray Adhesive	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-04B 132202258-0008	Exterior - Edge Valley - Gray Adhesive	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-05A 132202258-0009	Exterior - Lower Roof - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-05B 132202258-0010	Exterior - Lower Roof - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-06A 132202258-0011	Exterior - Flat Roofs - Lightweight Concrete Panel	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-06B 132202258-0012	Exterior - Flat Roofs - Lightweight Concrete Panel	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-07A 132202258-0013	Exterior - Flat Roofs - Rubber Membrane - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-07B 132202258-0014	Exterior - Flat Roofs - Rubber Membrane - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-08A 132202258-0015	Exterior - Flat Roofs - Foam Beneath Rubber - Black Paper	Brown Fibrous Homogeneous	90% Cellulose 5% Glass	5% Non-fibrous (Other)	None Detected
P-08B 132202258-0016	Exterior - Flat Roofs - Foam Beneath Rubber - Black Paper	Brown Fibrous Homogeneous	90% Cellulose 5% Glass	5% Non-fibrous (Other)	None Detected

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-09A 132202258-0017	Exterior - Wood Windows - Gray Glaze	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-09B 132202258-0018	Exterior - Wood Windows - Gray Glaze	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-10A 132202258-0019	Ground Level - Staff Room - Blue Countertop - Adhesive (White)	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-10B 132202258-0020	Ground Level - Staff Room - Blue Countertop - Adhesive (White)	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-11A 132202258-0021	Ground Level - Handicap Bath - Ceiling - White Texture Paint (Cream)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-11B 132202258-0022	Ground Level - Handicap Bath - Ceiling - White Texture Paint (Cream)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-11C 132202258-0023	Ground Level - Handicap Bath - Ceiling - White Texture Paint (Cream)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-12A 132202258-0024	Ground Level - Men's Bath - 1" Cer. Floor Tile - Gray Grout	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-12B 132202258-0025	Ground Level - Women's Bath - 1" Cer. Floor Tile - Gray Grout	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-13A 132202258-0026	Ground Level - Men's Bath - 1" Cer. Floor Tile - White Tape	White Fibrous Homogeneous	98% Cellulose	2% Non-fibrous (Other)	None Detected
P-13B 132202258-0027	Ground Level - Women's Bath - 1" Cer. Floor Tile - White Tape	White Fibrous Homogeneous	98% Cellulose	2% Non-fibrous (Other)	None Detected
P-14A 132202258-0028	Ground Level - Staff Room - Susp. Ceiling - 2x4 Rough Fissure	Gray/White Fibrous Homogeneous	60% Cellulose 20% Min. Wool	20% Non-fibrous (Other)	None Detected
P-14B 132202258-0029	Ground Level - Staff Room - Susp. Ceiling - 2x4 Rough Fissure	Gray/White Fibrous Homogeneous	60% Cellulose 20% Min. Wool	20% Non-fibrous (Other)	None Detected
P-15A 132202258-0030	Ground Level - Kitchen - Wall - 4" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-15B 132202258-0031	Ground Level - Kitchen - Wall - 4" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-16A 132202258-0032	Ground Level - Kitchen - 4" Black Cove Base - Tan Adhesive	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-16B	Ground Level - Kitchen - 4" Black Cove Base - Tan Adhesive	Tan Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0033					
P-17A	Ground Level - Kitchen - 4" Black Cove Base - Residual Brown Adhesive	Brown Non-Fibrous Homogeneous		98% Non-fibrous (Other)	2% Chrysotile
132202258-0034					
P-17B	Ground Level - Kitchen - 4" Black Cove Base - Residual Brown Adhesive				Positive Stop (Not Analyzed)
132202258-0035					
P-18A	Ground Level - Conference Room - Wall - 4" Gray Cove Base	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0036					
P-18B	Ground Level - Conference Room - Wall - 4" Gray Cove Base	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0037					
P-19A	Ground Level - Conference Room - 4" Gray Cove Base - White Adhesive	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0038					
P-19B	Ground Level - Conference Room - 4" Gray Cove Base - White Adhesive	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0039					
P-20A	Ground Level - Conference Room - 4" Gray Cove Base - Residual Brown Adhesive	Brown Non-Fibrous Homogeneous		98% Non-fibrous (Other)	2% Chrysotile
132202258-0040					
P-20B	Ground Level - Conference Room - 4" Gray Cove Base - Residual Brown Adhesive				Positive Stop (Not Analyzed)
132202258-0041					
P-21A	Ground Level - Hall - Suspended Ceiling - 2x2 Pinhole Tile	Gray/White Fibrous Homogeneous	60% Cellulose 20% Min. Wool	20% Non-fibrous (Other)	None Detected
132202258-0042					
P-21B	Ground Level - Hall - Suspended Ceiling - 2x2 Pinhole Tile	Gray/White Fibrous Homogeneous	60% Cellulose 20% Min. Wool	20% Non-fibrous (Other)	None Detected
132202258-0043					
P-22A	Ground Level - Kitchen - Gray Masonite Counter Panel - Adhesive (White)	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0044					
P-22B	Ground Level - Kitchen - Gray Masonite Counter Panel - Adhesive (White)	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0045					
P-23A	Ground Level - Under Carpet - Halls - Green Adhesive	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
132202258-0046					

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-23B 132202258-0047	Ground Level - Under Carpet - Halls - Green Adhesive	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-24A 132202258-0048	Ground Level - Storage Off Staff Room - Floor - 12" Light Blue Floor Tile	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-24B 132202258-0049	Ground Level - Storage Off Staff Room - Floor - 12" Light Blue Floor Tile	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-25A 132202258-0050	Ground Level - Storage Off Staff Room - 12" Light Blue Floor Tile - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-25B 132202258-0051	Ground Level - Storage Off Staff Room - 12" Light Blue Floor Tile - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-26A 132202258-0052	Ground Level - Kitchen - Floor - 12" Blue Floor Tile	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-26B 132202258-0053	Ground Level - Kitchen - Floor - 12" Blue Floor Tile	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-27A 132202258-0054	Ground Level - Kitchen - Under 12" Blue Floor Tile - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-27B 132202258-0055	Ground Level - Kitchen - Under 12" Blue Floor Tile - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-28A 132202258-0056	Ground Level - Kitchen - Wall - 6" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-28B 132202258-0057	Ground Level - Kitchen - Wall - 6" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-29A 132202258-0058	Ground Level - Kitchen - 6" Black Cove Base - White Adhesive	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-29B 132202258-0059	Ground Level - Kitchen - 6" Black Cove Base - White Adhesive	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-30A 132202258-0060	Ground Level - Kitchen - 6" Black Cove Base - Residual Brown Adhesive	Brown Non-Fibrous Homogeneous		98% Non-fibrous (Other)	2% Chrysotile
P-30B 132202258-0061	Ground Level - Kitchen - 6" Black Cove Base - Residual Brown Adhesive				Positive Stop (Not Analyzed)

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-31A 132202258-0062	Ground Level - Community Room - Floor - Residual Brown Adhesive (Beneath Blue Paint)	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-31B 132202258-0063	Ground Level - Community Room - Floor - Residual Brown Adhesive (Beneath Blue Paint)	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-32A 132202258-0064	Ground Level - Community Room - Suspended Ceiling - 1x1 Fissure Tile (& in Staff Room Office)	Gray/White Fibrous Homogeneous	80% Min. Wool	20% Non-fibrous (Other)	None Detected
P-32B 132202258-0065	Ground Level - Children's Room - Suspended Ceiling - 1x1 Fissure Tile (& in Staff Room Office)	Gray/White Fibrous Homogeneous	80% Min. Wool	20% Non-fibrous (Other)	None Detected
P-33A 132202258-0066	1st Floor - Under Carpet in Library - Green Adhesive	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-33B 132202258-0067	1st Floor - Under Carpet in Library - Green Adhesive	Green Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-34A 132202258-0068	1st Floor - Employee Area - Sink - Pink Undercoat (1 Sink)	Pink Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-34B 132202258-0069	1st Floor - Employee Area - Sink - Pink Undercoat (1 Sink)	Pink Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-35A 132202258-0070	1st Floor - Walls - 4" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-35B 132202258-0071	1st Floor - Walls - 4" Black Cove Base	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-36A 132202258-0072	1st Floor - 4" Black Cove Base - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-36B 132202258-0073	1st Floor - 4" Black Cove Base - Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-37A 132202258-0074	1st Floor - 4" Black Cove Base - Brown Residual Adhesive	Brown Non-Fibrous Homogeneous		98% Non-fibrous (Other)	2% Chrysotile
P-37B 132202258-0075	1st Floor - 4" Black Cove Base - Brown Residual Adhesive				Positive Stop (Not Analyzed)
P-38A 132202258-0076	2nd Floor - Baths - Mens - Ceramic Floor - Dark Gray Grout	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-38B 132202258-0077	2nd Floor - Baths - Womens - Ceramic Floor - Dark Gray Grout	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-39A 132202258-0078	2nd Floor - Baths - Mens - Ceramic Floor - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-39B 132202258-0079	2nd Floor - Baths - Womens - Ceramic Floor - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-40A 132202258-0080	2nd Floor - Break Room - 4" Blue Cove Base	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-40B 132202258-0081	2nd Floor - Halls - 4" Blue Cove Base	Blue Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-41A 132202258-0082	2nd Floor - Break Room - Light Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-41B 132202258-0083	2nd Floor - Halls - Light Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-41C 132202258-0084	2nd Floor - Halls - Light Yellow Adhesive	Yellow Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-42A 132202258-0085	2nd Floor - Break Room - Walls - Joint Compound (White)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-42B 132202258-0086	2nd Floor - Main Hall - Walls - Joint Compound (White)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-42C 132202258-0087	2nd Floor - North Office - Walls - Joint Compound (White)	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-43A 132202258-0088	2nd Floor - Break Room - Sink - Sink Undercoating (White) (1 Sink)	White Non-Fibrous Homogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
P-43B 132202258-0089	2nd Floor - Break Room - Sink - Sink Undercoating (White) (1 Sink)	White Non-Fibrous Homogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
P-44A 132202258-0090	2nd Floor - HVAC Rooms - on AHU#3 Ducts - Seam Sealant (Gray)	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-44B 132202258-0091	2nd Floor - HVAC Rooms - on AHU#4 Ducts - Seam Sealant (Gray)	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-45A 132202258-0092	2nd Floor - HVAC Rooms - Ceilings - Lightweight Concrete Panels	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-45B 132202258-0093	2nd Floor - HVAC Rooms - Ceilings - Lightweight Concrete Panels	White Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-46A 132202258-0094	Stairwell - Ground Level to 2nd Floor - Black Stair Tread	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com**EMSL Order:** 132202258**Customer ID:** MMAC42**Customer PO:****Project ID:****Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy**

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-46B 132202258-0095	Stairwell - Ground Level to 2nd Floor - Black Stair Tread	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-47A 132202258-0096	Stairwell - Ground Level to 2nd Floor - Dark Brown Adhesive	Brown Non-Fibrous Homogeneous		98% Non-fibrous (Other)	2% Chrysotile
P-47B 132202258-0097	Stairwell - Ground Level to 2nd Floor - Dark Brown Adhesive				Positive Stop (Not Analyzed)
P-48A 132202258-0098	Ground Level - Behind Wall Heaters - Foil Batting Insulation Paper	Tan/Silver Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
P-48B 132202258-0099	Ground Level - Behind Wall Heaters - Foil Batting Insulation Paper	Tan/Silver Fibrous Homogeneous	90% Cellulose	10% Non-fibrous (Other)	None Detected
P-49A 132202258-0100	Ground Level - Behind Wall Heaters - Black Adhesive on Paper	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-49B 132202258-0101	Ground Level - Behind Wall Heaters - Black Adhesive on Paper	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-50A 132202258-0102	Exterior Façade (Brick) - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-50B 132202258-0103	Exterior Façade (Brick) - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-50C 132202258-0104	Exterior Façade (Brick) - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-50D 132202258-0105	Exterior Façade (Brick) - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-50E 132202258-0106	Exterior Façade (Brick) - Gray Mortar	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-51A 132202258-0107	Between Exterior Brick Façade & Int. CMU Walls - Black Vapor Barrier Paper	Black Fibrous Homogeneous	20% Cellulose	80% Non-fibrous (Other)	None Detected
P-51B 132202258-0108	Between Exterior Brick Façade & Int. CMU Walls - Black Vapor Barrier Paper	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-51C 132202258-0109	Between Exterior Brick Façade & Int. CMU Walls - Black Vapor Barrier Paper	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-52A-Cementitious Coating 132202258-0110	Exterior Foundation - South Wall - Cementitious Coating	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected

Initial report from: 04/07/2022 16:29:46

EMSL Analytical, Inc.

5 Constitution Way, Unit A Woburn, MA 01801

Tel/Fax: (781) 933-8411 / (781) 933-8412

<http://www.EMSL.com> / bostonlab@emsl.com

EMSL Order: 132202258

Customer ID: MMAC42

Customer PO:

Project ID:

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

Sample	Description	Appearance	Non-Asbestos		Asbestos % Type
			% Fibrous	% Non-Fibrous	
P-52A-Black Mastic 132202258-0110A	Exterior Foundation - South Wall - Cementitious Coating	Black Non-Fibrous Homogeneous		90% Non-fibrous (Other)	10% Chrysotile
P-52B-Cementitious Coating 132202258-0111	Exterior Foundation - East/Front Wall - Cementitious Coating	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-52B-Black Mastic 132202258-0111A	Exterior Foundation - East/Front Wall - Cementitious Coating				Positive Stop (Not Analyzed)
P-52C-Cementitious Coating 132202258-0112	Exterior Foundation - North Wall - Cementitious Coating	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
P-52C-Black Mastic 132202258-0112A	Exterior Foundation - North Wall - Cementitious Coating				Positive Stop (Not Analyzed)

Analyst(s)

Kevin Pine (108)

Steve Grise, Laboratory Manager
or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis. Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Woburn, MA NVLAP Lab Code 101147-0, CT PH-0315, MA AA000188, RI AAL-139, VT AL998919, ME LB-0039

Initial report from: 04/07/2022 16:29:46

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

132202258

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077PHONE: (800) 220-3675
EMAIL: CinnAslab@EMSL.com

Customer Information	Customer ID: MMAC42	Billing ID:		
	Company Name: SLR International Corporation	Company Name: SLR International Corporation		
	Contact Name: Keith Allard	Billing Contact: Keith Allard		
	Street Address: 2 Commerce Drive, Suite 110	Street Address: 2 Commerce Drive, Suite 110		
	City, State, Zip: Bedford, NH 03110	Country: US	City, State, Zip: Bedford, NH 03110	Country: US
	Phone: 603 289-1951	Phone: 603 289-1951		
Email(s) for Report: kallard@slrconsulting.com	Email(s) for Invoice: kallard@slrconsulting.com			

Project Information								
Project Name/No: 144.12571.00015.0050 - Prosser	Purchase Order:							
EMSL LIMS Project ID: (If applicable, EMSL will provide)	US State where samples collected:	State of Connecticut (CT) must select project location: <input checked="" type="checkbox"/> Commercial (Taxable) <input type="checkbox"/> Residential (Non-Taxable)						
Sampled By Name: Ryan Rouillard	Sampled By Signature:	No. of Samples in Shipment						
Turn-Around-Time (TAT)								
<input type="checkbox"/> 3 Hour	<input type="checkbox"/> 6 Hour	<input type="checkbox"/> 24 Hour	<input type="checkbox"/> 32 Hour	<input type="checkbox"/> 48 Hour	<input type="checkbox"/> 72 Hour	<input type="checkbox"/> 96 Hour	<input checked="" type="checkbox"/> 1 Week	<input type="checkbox"/> 2 Week

Please call ahead for large projects and/or turnaround times 6 Hours or Less. *32 Hour TAT available for select tests only; samples must be submitted by 11:30am.

<u>PLM - Bulk (reporting limit)</u>		<u>Test Selection</u>	<u>TEM - Bulk</u>
<input checked="" type="checkbox"/> PLM EPA 600/R-93/116 (<1%)	<input type="checkbox"/> PLM EPA NOB (<1%)	<input type="checkbox"/> TEM - Bulk	<input type="checkbox"/> TEM EPA NOB
<input type="checkbox"/> POINT COUNT	<input type="checkbox"/> POINT COUNT w/ GRAVIMETRIC	<input type="checkbox"/> NYS NOB 198.4 (Non-Friable-NY)	<input type="checkbox"/> NYS EPA 600/R-93/116 w/ Milling Prep (0.1%)
<input type="checkbox"/> 400 (<0.25%) <input type="checkbox"/> 1,000 (<0.1%)	<input type="checkbox"/> 400 (<0.25%) <input type="checkbox"/> 1,000 (<0.1%)	<u>Other Tests (please specify)</u>	
<input type="checkbox"/> NIOSH 9002 (<1%)	<input type="checkbox"/> NYS 198.1 (Friable - NY)	<input checked="" type="checkbox"/> Positive Stop - Clearly Identified Homogeneous Areas (HA)	
<input type="checkbox"/> NYS 198.6 NOB (Non-Friable - NY)	<input type="checkbox"/> NYS 198.8 (Vermiculite SM-V)		

Sample Number	HA Number	Sample Location	Material Description
P01 A		Exterior - Roof - Drain pipe	Black adhesive
↓ B			2 SF
P02 A		- Membrane + Patch	Black adhesive
↓ B			280 SF
P03 A		- Beneath slate roof	Black Paper
↓ B			8,000 SF
P04 A		- Edge Valley	Gray adhesive
↓ B			100 SF
P05 A		- Lower Roof	Yellow adhesive
↓ B			300 SF

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Method of Shipment:	Sample Condition Upon Receipt:
Relinquished by:	Date/Time: 3/21/2022
Received by:	Date/Time: 3/21/2022
Relinquished by:	Date/Time: 3/21/2022
Received by:	Date/Time: 3/21/2022

Controlled Document - Asbestos Bulk R5 03/18/2021

 AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077PHONE: (800) 220-3675
EMAIL: CinnAsLab@EMSL.com

132202258

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Sample Number	HA Number	Sample Location	Material Description
P06 A		Exterior - Flat roofs	Lightweight panel Concrete panel ^{yellow}
↓ B			
P07 A		- Rubber membrane	Yellow adhesive
↓ B			
P08 A		- Foam beneath rubber	Black paper
↓ B			
P09 A		- Wood windows	Gray glaze (GRAY)
↓ B			
P10 A		Ground - Staff Rm - Blue Counter top	adhesive (white)
↓ B			
P11 A		- Handicap Bath - Ceiling	white texture paint (cream)
↓ B			
↓ C			
P12 A		- Mens Bath - 1" Cer. ^{Floor tile}	Gray grout
↓ B			
P13 A		- Womens Bath	
↓ B			
P14 A		- Mens Bath	white tape
↓ B			
P15 A		- Womens Bath	
↓ B			
P16 A		- Staff Rm - Susp ceiling	2x4 Rough fissure
↓ B			
P17 A		- kitchen - wall	4" Black Cove base
↓ B			
P18 A		- 4" ^{black} black Cove base	Tan adhesive
↓ B			
P19 A			Residual Brown adhesive
↓ B			

Method of Shipment:

Relinquished by:

Date/Time:

3/21/22

Sample Condition Upon Receipt:

Received by:

RECEIVED
EMSL PRINCETON

MAR 30 2022

Date/Time

Controlled Document - Asbestos Bulk R5 03/18/2021

 AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

EMSL ANALYTICAL, INC.
TESTING LABS • PRODUCTS • TRAINING

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

132202258

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077

PHONE: (800) 220-3675
EMAIL: CinnAsblab@EMSL.com

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Sample Number	HA Number	Sample Location	Material Description
P18 A		Ground level - Conference Rm - Wall	4" Gray Cove base
↓ B			
P19 A		4" Gray Cove base	white adhesive
↓ B			
P20 A			Residual Brown adhesive
↓ B			
P21 A		- Hall - Suspended ceiling	2x2 pin hole tile
↓ B			
P22 A		- Kitchen - Blue Gray Masonite counterpanel	adhesive (white)
↓ B			
P23 A		- Carpet - Halls	Green adhesive
↓ B			
P24 A		- Storage area - Floor off staff rm.	12" Lt. Blue Floor tile
↓ B			
P25 A		- 12" Lt. Blue Floor tile	Yellow adhesive
↓ B			
P26 A		- Kitchen - Floor	Resistant 12" Blue Floor tile
↓ B			
P27 A		- 12" Blue Floor tile	Yellow adhesive
↓ B			
P28 A		- Wall	6" BLACK BR Cove base
↓ B			
P29 A		- 6" BLACK BR Cove base	white adhesive
↓ B			

Method of Shipment:

Relinquished by:

Date/Time: 3/21/22

Sample Condition Upon Receipt:

Received by:

RECD
EMSL - BOSTON

Date/Time: MAR 30 2022

Date/Time:

Controlled Document - Asbestos Bulk R5 03/18/2021

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

EMSL ANALYTICAL, INC.
TESTING LABS • PRODUCTS • TRAINING

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077

PHONE: (800) 220-3675
EMAIL: CinnAslab@EMSL.com

132202258

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Sample Number	HA Number	Sample Location	Material Description
P30 A		Ground level - kitchen - 6" Blk Cove base	Residual Brown adhesive
↓ B		↓	↓
P31 A		- Community Rm - Floor	Brown Residual adhesive (Beneath blue paint)
↓ B		↓	↓
P32 A		- Suspended ceiling - Childrens Rm	1x1 Fissure tile AND IN PART ROOM OFFICE
↓ B		↓	↓
P33 A		1st Floor Carpet in Library	Green adhesive
↓ B		↓	↓
P34 A		- Employee area - Sink	Pink undercoat
↓ B		↓	↓
P35 A		- walls	4" BLACK Blk Cove base
↓ B		↓	↓
P36 A		- 4" Black Cove base	Yellow adhesive
↓ B		↓	↓
P37 A		2nd Floor - Baths - Mens - Floor	Brown residual adhesive
↓ B		↓	↓
P38 A		2nd Floor - Baths - Mens - Floor	Ceramic Dark gray grout
↓ B		↓	↓
P39 A		- Womens	Gray mortar
↓ B		↓	↓
P40 A		- Womens	4" BLUE Cove BASE
↓ B		↓	↓
P41 A		- Mens	Light Yellow Adhesive
↓ B		↓	↓
C		↓	↓

Method of Shipment:

Relinquished by:

Date/Time:

3/21/22

Sample Condition Upon Receipt:

Received by:

Date/Time

Relinquished by:

Date/Time:

Received by:

Date/Time

Controlled Document - Asbestos Bulk R5 03/18/2021

 AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

Asbestos Bulk Building Materials - Chain of Custody

EMSL Order Number / Lab Use Only

132202258

EMSL Analytical, Inc.
200 Route 130 North
Cinnaminson, NJ 08077PHONE: (800) 220-3675
EMAIL: CinnAsblab@EMSL.com

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Sample Number	HA Number	Sample Location	Material Description
P42 A		2 nd FLOOR - Break Room - Main Hall - North Office	Joint Compound (White)
B			
C			
P43 A		- Break Room Sink	Sink Undercoating (White)
B			
P44 A		- HVAC Rooms-on ^{Attic} ducts	Seam Sealant (Grey)
B			
P45 A		- Ceilings	Lightweight Concrete Panels
B			
P46 A		STAIRWELL - Ground level to 2 nd floor	BLACK STAIR TREAD
B			
P47 A			Dark Brown Adhesive
B			
P48 A		Ground level - Behind Wall Heaters	Foil batt Insulation Paper
B			
P49 A			BLACK Adhesive on Paper
B			
P50 A		EXTERIOR FACADE (Brick)	(Grey) Mortar
B			
C			
D			
E			
P51 A		Between Exterior Brick Facade & ^{Int} CMU _{Walls}	BLACK Vapor Barrier Paper
B			
C			

Method of Shipment:

Relinquished by:

Date/Time: 3/21/22

Sample Condition Upon Receipt:

Received by:

Date/Time

Relinquished by:

Date/Time:

Received by:
REC'D
EMSL - BOSTON

Date/Time

Controlled Document - Asbestos Bulk R5 03/18/2021

 AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

PHONE: (800) 220-3675
EMAIL: CinnAsblab@EMSL.com

Additional Pages of the Chain of Custody are only necessary if needed for additional sample information.

Special Instructions and/or Regulatory Requirements (Sample Specifications, Processing Methods, Limits of Detection, etc.)

Method of Shipment:

Sample Condition Upon Receipt

Relinquished by

Date/Time: 3/31/22

Received by

时间 30/2024 Date/Time

Belinquished by

Date/Time: Sept 10

Received by

MAN - 2

Controlled Document - Asbestos Bulk R5 03/18/2021

AGREE TO ELECTRONIC SIGNATURE (By checking, I consent to signing this Chain of Custody document by electronic signature.)

EMSL Analytical, Inc.'s Laboratory Terms and Conditions are incorporated into this Chain of Custody by reference in their entirety. Submission of samples to EMSL Analytical, Inc. constitutes acceptance and acknowledgment of all terms and conditions by Customer.

APPENDIX B

LEAD ANALYTICAL LABORATORY REPORTS AND CHAINS OF CUSTODY

EMSL Analytical, Inc.

528 Mineola Avenue, Carle Place, NY 11514

Phone/Fax: (516) 997-7251 / (516) 997-7528

<http://www.EMSL.com>carleplacelab@emsl.com

EMSL Order:	062206216
CustomerID:	MMAC42
CustomerPO:	
ProjectID:	

Attn: **Keith Allard**
SLR International Corporation
2 Commerce Drive, Suite 110
Bedford, NH 03110

Phone: (203) 271-1773
Fax:
Received: 3/31/2022 10:44 AM
Collected: 3/17/2022

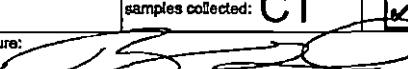
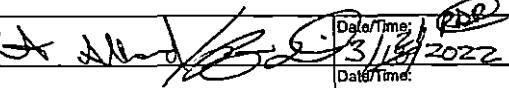
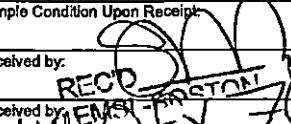
Project: 144.12571.00015.0050 - Prosser

Test Report: Lead in Paint Chips by Flame AAS (SW 846 3050B/7000B)*

<i>Client Sample Description</i>	<i>Lab ID</i>	<i>Collected</i>	<i>Analyzed</i>	<i>Lead Concentration</i>
1P	062206216-0001	3/17/2022	4/7/2022	1.4 % wt
		Site: Stairwell (Olive)		
2P	062206216-0002	3/17/2022	4/7/2022	0.051 % wt
		Site: Kitchen (Cream)		
3P	062206216-0003	3/17/2022	4/7/2022	<0.029 % wt
		Site: Interior CMU Walls (White)		

Dominique Iaccarino, Chemistry Lab Manager
or other approved signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted.




* Analysis following Lead in Paint by EMSL SOP/Determination of Environmental Lead by FLAA. Reporting limit is 0.008% wt based on the minimum sample weight per our SOP. "<" (less than) result signifies the analyte was not detected at or above the reporting limit. Measurement of uncertainty is available upon request. Definitions of modifications are available upon request.

Samples analyzed by EMSL Analytical, Inc. Carle Place, NY Lab ID 102344 is accredited by AIHA-LAP, LLC in the env. accreditation program for Lead in Paint, CT PH-0249, CA ELAP 2339

Initial report from 04/07/2022 10:05:38

PHONE: (800) 220-3675

EMAIL: ChneminsonLoadLab@emsl.com

Customer Information Customer ID: MMAC42 Company Name: SLR International Corporation Contact Name: Keith Allard Street Address: 2 Commerce Drive, Suite 110 City, State, Zip: Bedford, NH 03110 Country: US Phone: 603 289-1951 Email(s) for Report: kallard@slrconsulting.com		Billing Information Company Name: SLR International Corporation Billing Contact: Keith Allard Street Address: 2 Commerce Drive, Suite 110 City, State, Zip: Bedford, NH 03110 Country: US Phone: 603 289-1951 Email(s) for Invoice: kallard@slrconsulting.com						
				Project Information				
				Project Name/No: 144.12571.00015.0050 - Prosser		Purchase Order: A		
				EMSL LIMS Project ID: (If applicable, EMSL will provide)		US State where samples collected: CT	State of Connecticut (CT) must select project location: <input checked="" type="checkbox"/> Commercial (Taxable) <input type="checkbox"/> Residential (Non-Taxable)	
				Sampled By Name:		Sampled By Signature:		
						No. of Samples in Shipment		
Turn-Around-Time (TAT)								
<input type="checkbox"/> 3 Hour	<input type="checkbox"/> 6 Hour	<input type="checkbox"/> 24 Hour	<input type="checkbox"/> 32 Hour	<input type="checkbox"/> 48 Hour	<input type="checkbox"/> 72 Hour	<input type="checkbox"/> 96 Hour	<input checked="" type="checkbox"/> 1 Week	<input type="checkbox"/> 2 Week
Please call ahead for large projects and/or turnaround times 8 Hours or Less. *32 Hour TAT available for select tests only; samples must be submitted by 11:30am.								
MATRIX	METHOD	INSTRUMENT	REPORTING LIMIT		SELECTION			
CHIPS <input checked="" type="checkbox"/> % by wt. <input type="checkbox"/> ppm (mg/kg) <input type="checkbox"/> mg/cm ³	SW 846-7000B	Flame Atomic Absorption	0.008% (80ppm)		<input checked="" type="checkbox"/> CM <input checked="" type="checkbox"/> AN			
*Reporting Limit based on a minimum 0.25g sample weight								
AIR	SW 846-6010D*	ICP-OES	0.0004% (4ppm)		<input type="checkbox"/>			
	NIOSH 7082	Flame Atomic Absorption	4µg/filter		<input type="checkbox"/>			
	NIOSH 7300M / NIOSH 7303M	ICP-OES	0.5µg/filter		<input type="checkbox"/>			
	NIOSH 7300M / NIOSH 7303M	ICP-MS	0.05µg/filter		<input type="checkbox"/>			
WIPE <input type="checkbox"/> ASTM <input type="checkbox"/> NON-ASTM	SW 846-7000B	Flame Atomic Absorption	10µg/wipe		<input type="checkbox"/>			
*If no box is checked, non-ASTM Wipe is assumed								
TCLP	SW 846-1311 / 7000B / SM 3111B	Flame Atomic Absorption	0.4 mg/L (ppm)		<input type="checkbox"/>			
	SW 846-1311 / SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)		<input type="checkbox"/>			
SPLP	SW 846-1312 / 7000B / SM 3111B	Flame Atomic Absorption	0.4 mg/L (ppm)		<input type="checkbox"/>			
	SW 846-1312 / SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)		<input type="checkbox"/>			
TTLA	22 CCR App. II, 7000B	Flame Atomic Absorption	40mg/kg (ppm)		<input type="checkbox"/>			
	22 CCR App. II, SW 846-6010D*	ICP-OES	2mg/kg (ppm)		<input type="checkbox"/>			
STLC	22 CCR App. II, 7000B	Flame Atomic Absorption	0.4 mg/L (ppm)		<input type="checkbox"/>			
	22 CCR App. II, SW 846-6010D*	ICP-OES	0.1 mg/L (ppm)		<input type="checkbox"/>			
Soil	SW 846-7000B	Flame Atomic Absorption	40mg/kg (ppm)		<input type="checkbox"/>			
	SW 846-6010D*	ICP-OES	2mg/kg (ppm)		<input type="checkbox"/>			
Wastewater	SM 3111B / SW 846-7000B	Flame Atomic Absorption	0.4 mg/L (ppm)		<input type="checkbox"/>			
	Unpreserved <input type="checkbox"/> Preserved with HNO ₃ <input type="checkbox"/> PH<2	EPA 200.7	ICP-OES	0.020 mg/L (ppm)		<input type="checkbox"/>		
Drinking Water	EPA 200.5	ICP-OES	0.003 mg/L (ppm)		<input type="checkbox"/>			
	Unpreserved <input type="checkbox"/> Preserved with HNO ₃ <input type="checkbox"/> PH<2	EPA 200.8	ICP-MS	0.001 mg/L (ppm)		<input type="checkbox"/>		
TSP/SPM Filter	40 CFR Part 50	ICP-OES	12 µg/filter		<input type="checkbox"/>			
Other:					<input type="checkbox"/>			
Sample Number	Sample Location	Volume / Area		Date / Time Sampled				
1P	Stair well (olive)	760 SF ^{1/2}		3/17/2022				
2P	Kitchen (cream)	200 SF ^{1/2}		3/17/2022				
3P	Interior ^{cm²} walls (white)	2,000 SF ^{1/2}		3/17/2022				
P6 Allard B. Moyer 4/7/22								
Method of Shipment:		Sample Condition Upon Receipt:						
Reinquished by:	Date/Time: 3/17/2022	Received by:	Date/Time: 3/17/2022					
Reinquished by:	Date/Time:	Received by:	Date/Time: 3/17/2022					

APPENDIX C

POLYCHLORINATED BIPHENYL ANALYTICAL LABORATORY REPORTS

Tuesday, March 29, 2022

Attn: Ryan Rouillard
SLR International Corporation
2 Commerce Dr, Suite 110
Bedford, NH 03110

Project ID: PROSSER
SDG ID: GCK91723
Sample ID#s: CK91723 - CK91725

This laboratory is in compliance with the NELAC requirements of procedures used except where indicated.

This report contains results for the parameters tested, under the sampling conditions described on the Chain Of Custody, as received by the laboratory. This report is incomplete unless all pages indicated in the pagination at the bottom of the page are included.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

A scanned version of the COC form accompanies the analytical report and is an exact duplicate of the original.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Sincerely yours,

A handwritten signature in black ink, appearing to read "Phyllis Shiller".

Phyllis Shiller

Laboratory Director

NELAC - #NY11301
CT Lab Registration #PH-0618
MA Lab Registration #M-CT007
ME Lab Registration #CT-007
NH Lab Registration #213693-A,B

NJ Lab Registration #CT-003
NY Lab Registration #11301
PA Lab Registration #68-03530
RI Lab Registration #63
UT Lab Registration #CT00007
VT Lab Registration #VT11301

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Sample Id Cross Reference

March 29, 2022

SDG I.D.: GCK91723

Project ID: PROSSER

Client Id	Lab Id	Matrix
1P-FOUNDATION BLK MASTIC	CK91723	CAULK
2P-EXT WHT WIND CAULK	CK91724	CAULK
3P EXT WALL VAPOR BARRIER PAPER	CK91725	BULK

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 29, 2022

FOR: Attn: Ryan Rouillard
SLR International Corporation
2 Commerce Dr, Suite 110
Bedford, NH 03110

Sample Information

Matrix: CAULK
Location Code: SLR-NH
Rush Request: Standard
P.O.#: 144.12571.00015.0050

Custody Information

Collected by: CP
Received by: CP
Analyzed by: see "By" below

Date

03/17/22
03/22/22 16:58

Time

SDG ID: GCK91723
Phoenix ID: CK91723

Project ID: PROSSER

Client ID: 1P-FOUNDATION BLK MASTIC

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Caulk Extraction for PCB	Completed				03/22/22	P/H/K	SW3540C
PCB (Soxhlet SW3540C)							
PCB-1016	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1221	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1232	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1242	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1248	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1254	0.93	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1260	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1262	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
PCB-1268	ND	0.92	mg/kg	5	03/23/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	47		%	5	03/23/22	SC	30 - 150 %
% DCBP (Confirmation)	42		%	5	03/23/22	SC	30 - 150 %
% TCMX	41		%	5	03/23/22	SC	30 - 150 %
% TCMX (Confirmation)	40		%	5	03/23/22	SC	30 - 150 %

Project ID: PROSSER

Phoenix I.D.: CK91723

Client ID: 1P-FOUNDATION BLK MASTIC

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level
QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 29, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 29, 2022

FOR: Attn: Ryan Rouillard
SLR International Corporation
2 Commerce Dr, Suite 110
Bedford, NH 03110

Sample Information

Matrix: CAULK
Location Code: SLR-NH
Rush Request: Standard
P.O.#: 144.12571.00015.0050

Custody Information

Collected by: CP
Received by: CP
Analyzed by: see "By" below

Date

03/17/22
03/22/22 16:58

Time

SDG ID: GCK91723

Phoenix ID: CK91724

Project ID: PROSSER

Client ID: 2P-EXT WHT WIND CAULK

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

Caulk Extraction for PCB	Completed				03/22/22	P/H/K	SW3540C
--------------------------	-----------	--	--	--	----------	-------	---------

PCB (Soxhlet SW3540C)

PCB-1016	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1221	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1232	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1242	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1248	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1254	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1260	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1262	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A
PCB-1268	ND	0.41	mg/kg	2	03/24/22	SC	SW8082A

QA/QC Surrogates

% DCBP	71	%	2	03/24/22	SC	30 - 150 %
% DCBP (Confirmation)	63	%	2	03/24/22	SC	30 - 150 %
% TCMX	61	%	2	03/24/22	SC	30 - 150 %
% TCMX (Confirmation)	59	%	2	03/24/22	SC	30 - 150 %

Project ID: PROSSER
Client ID: 2P-EXT WHT WIND CAULK

Phoenix I.D.: CK91724

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level
QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller

Phyllis Shiller, Laboratory Director

March 29, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

Analysis Report

March 29, 2022

FOR: Attn: Ryan Rouillard
SLR International Corporation
2 Commerce Dr, Suite 110
Bedford, NH 03110

Sample Information

Matrix: BULK
Location Code: SLR-NH
Rush Request: Standard
P.O.#: 144.12571.00015.0050

Custody Information

Collected by: CP
Received by: CP
Analyzed by: see "By" below

Date

03/17/22
03/22/22 16:58

Time

SDG ID: GCK91723
Phoenix ID: CK91725

Project ID: PROSSER

Client ID: 3P EXT WALL VAPOR BARRIER PAPER

Laboratory Data

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
Extraction for PCB	Completed				03/24/22	P/B/KH	SW3540C
PCB (Soxhlet SW3540C)							
PCB-1016	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1221	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1232	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1242	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1248	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1254	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1260	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1262	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
PCB-1268	ND	0.98	mg/kg	2	03/25/22	SC	SW8082A
QA/QC Surrogates							
% DCBP	26		%	2	03/25/22	SC	30 - 150 %
% DCBP (Confirmation)	24		%	2	03/25/22	SC	30 - 150 %
% TCMX	25		%	2	03/25/22	SC	30 - 150 %
% TCMX (Confirmation)	24		%	2	03/25/22	SC	30 - 150 %

Project ID: PROSSER

Phoenix I.D.: CK91725

Client ID: 3P EXT WALL VAPOR BARRIER PAPER

Parameter	Result	RL/ PQL	Units	Dilution	Date/Time	By	Reference
-----------	--------	------------	-------	----------	-----------	----	-----------

3 = This parameter exceeds laboratory specified limits.

RL/PQL=Reporting/Practical Quantitation Level ND=Not Detected BRL=Below Reporting Level

QA/QC Surrogates: Surrogates are compounds (preceded with a %) added by the lab to determine analysis efficiency. Surrogate results(%) listed in the report are not "detected" compounds.

Comments:

Results are reported on an ``as received`` basis, and are not corrected for dry weight.

PCB Comment:

Poor surrogate recovery was observed for PCBs. Sample was re-extracted with similar results.

All soils, solids and sludges are reported on a dry weight basis unless otherwise noted in the sample comments.

If you are the client above and have any questions concerning this testing, please do not hesitate to contact Phoenix Client Services at ext.200. The contents of this report cannot be discussed with anyone other than the client listed above without their written consent.

Phyllis Shiller, Laboratory Director

March 29, 2022

Reviewed and Released by: Rashmi Makol, Project Manager

Environmental Laboratories, Inc.

587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

QA/QC Report

March 29, 2022

QA/QC Data

SDG I.D.: GCK91723

Parameter	Blank	Blk	RL	LCS %	LCSD %	LCS RPD	MS %	MSD %	MS RPD	% Rec Limits	% RPD Limits
-----------	-------	-----	----	-------	--------	---------	------	-------	--------	--------------	--------------

QA/QC Batch 616803 (ug/Kg), QC Sample No: CK91544 10X (CK91723, CK91724)

Polychlorinated Biphenyls

PCB-1016	ND	170		63	77	20.0				40 - 140	30
PCB-1221	ND	170								40 - 140	30
PCB-1232	ND	170								40 - 140	30
PCB-1242	ND	170								40 - 140	30
PCB-1248	ND	170								40 - 140	30
PCB-1254	ND	170								40 - 140	30
PCB-1260	ND	170		74	87	16.1				40 - 140	30
PCB-1262	ND	170								40 - 140	30
PCB-1268	ND	170								40 - 140	30
% DCBP (Surrogate Rec)	88	%		74	91	20.6				30 - 150	30
% DCBP (Surrogate Rec) (Confirm	92	%		76	92	19.0				30 - 150	30
% TCMX (Surrogate Rec)	81	%		60	82	31.0				30 - 150	30
% TCMX (Surrogate Rec) (Confirm	83	%		61	83	30.6				30 - 150	30

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

QA/QC Batch 617167 (ug/Kg), QC Sample No: CK92813 10X (CK91725)

Polychlorinated Biphenyls - Bulk

PCB-1016	ND	170		85	68	22.2				40 - 140	30
PCB-1221	ND	170								40 - 140	30
PCB-1232	ND	170								40 - 140	30
PCB-1242	ND	170								40 - 140	30
PCB-1248	ND	170								40 - 140	30
PCB-1254	ND	170								40 - 140	30
PCB-1260	ND	170		98	98	0.0				40 - 140	30
PCB-1262	ND	170								40 - 140	30
PCB-1268	ND	170								40 - 140	30
% DCBP (Surrogate Rec)	89	%		101	106	4.8				30 - 150	30
% DCBP (Surrogate Rec) (Confirm	92	%		104	107	2.8				30 - 150	30
% TCMX (Surrogate Rec)	73	%		82	73	11.6				30 - 150	30
% TCMX (Surrogate Rec) (Confirm	76	%		86	72	17.7				30 - 150	30

Comment:

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

r = This parameter is outside laboratory RPD specified recovery limits.

QA/QC Data

SDG I.D.: GCK91723

Parameter	Blank	Blk	LCS	LCSD	LCS	MS	MSD	MS	Rec	%	%
		RL	%	%	RPD	%	%	RPD	Limits	RPD	Limits

If there are any questions regarding this data, please call Phoenix Client Services at extension 200.

RPD - Relative Percent Difference
LCS - Laboratory Control Sample
LCSD - Laboratory Control Sample Duplicate
MS - Matrix Spike
MS Dup - Matrix Spike Duplicate
NC - No Criteria
Intf - Interference

Phyllis Shiller, Laboratory Director
March 29, 2022

Tuesday, March 29, 2022

Criteria: None

State: CT

SampNo Acode Phoenix Analyte

Sample Criteria Exceedances Report

GCK91723 - SLR-NH

*** No Data to Display ***

Phoenix Laboratories does not assume responsibility for the data contained in this exceedance report. It is provided as an additional tool to identify requested criteria exceedances. All efforts are made to ensure the accuracy of the data (obtained from appropriate agencies). A lack of exceedence information does not necessarily suggest conformance to the criteria. It is ultimately the site professional's responsibility to determine appropriate compliance.

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Phoenix Environmental Labs, Inc.

Client: SLR International Corporation

Project Location: PROSSER

Project Number:

Laboratory Sample ID(s): CK91723-CK91725

Sampling Date(s): 3/17/2022

List RCP Methods Used (e.g., 8260, 8270, et cetera) 8082

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CT DEP method-specific Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1A	Were the method specified preservation and holding time requirements met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1B	<u>VPH and EPH methods only:</u> Was the VPH or EPH method conducted without significant modifications (see section 11.3 of respective RCP methods)	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> NA
2	Were all samples received by the laboratory in a condition consistent with that described on the associated Chain-of-Custody document(s)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
3	Were samples received at an appropriate temperature (< 6 Degrees C)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> NA
4	Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? See Section: PCB Narration.	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
5	a) Were reporting limits specified or referenced on the chain-of-custody? b) Were these reporting limits met?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No <input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
7	Are project-specific matrix spikes and laboratory duplicates included in the data set?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or 1B is "No", the data package does not meet the requirements for "Reasonable Confidence". This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature: Rashmi Makol Position: Project Manager

Printed Name: Rashmi Makol Date: Tuesday, March 29, 2022

Name of Laboratory Phoenix Environmental Labs, Inc.

This certification form is to be used for RCP methods only.

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 29, 2022

SDG I.D.: GCK91723

PCB Narration

Were all QA/QC performance criteria specified in the Reasonable Confidence Protocol documents achieved? No.

QC Batch 616803 (Samples: CK91723, CK91724): -----

The LCS/LCSD RPD exceeds the method criteria for one or more surrogates, therefore there may be variability in the reported result. (% TCMX (Surrogate Rec), % TCMX (Surrogate Rec) (Confirmation))

Instrument:

AU-ECD29 03/24/22-1 Saadia Chudary, Chemist 03/24/22

CK91724 (2X)

The initial calibration (PC317AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC317BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 03/23/22-1 Saadia Chudary, Chemist 03/23/22

CK91723 (5X)

The initial calibration (PC315AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC315BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:None.

AU-ECD6 03/25/22-1 Saadia Chudary, Chemist 03/25/22

CK91725 (2X)

The initial calibration (PC315AI) RSD for the compound list was less than 20% except for the following compounds: None. The initial calibration (PC315BI) RSD for the compound list was less than 20% except for the following compounds: None. The continuing calibration %D for the compound list was less than 15% except for the following compounds:

Samples: CK91725

Preceding CC 325B021 - None.

Succeeding CC 325B034 - DCBP SURR -21%L (15%)

QC (Batch Specific):

Batch 616803 (CK91544)

CK91723, CK91724

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: % TCMX (Surrogate Rec)(31.0%), % TCMX (Surrogate Rec) (Confirmation)(30.6%)

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Batch 617167 (CK92813)

CK91725

All LCS recoveries were within 40 - 140 with the following exceptions: None.

All LCSD recoveries were within 40 - 140 with the following exceptions: None.

All LCS/LCSD RPDs were less than 30% with the following exceptions: None.

A LCS and LCS Duplicate were performed instead of a matrix spike and matrix spike duplicate.

Temperature Narration

Environmental Laboratories, Inc.
587 East Middle Turnpike, P.O.Box 370, Manchester, CT 06045
Tel. (860) 645-1102 Fax (860) 645-0823

RCP Certification Report

March 29, 2022

SDG I.D.: GCK91723

The samples were received at 2.3C with cooling initiated.
(Note acceptance criteria for relevant matrices is above freezing up to 6°C)

APPENDIX D

LICENSES

This is to certify that

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

has completed the requisite training by Video Conference, and has passed an examination for reaccreditation

Asbestos Management Planner Refresher
pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

Course Location

Zoom Video Conference

Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887

November 18, 2021

Course Dates

21-3788-136-226296

November 18, 2021

Examination Date

November 18, 2022

Expiration Date

Training Director

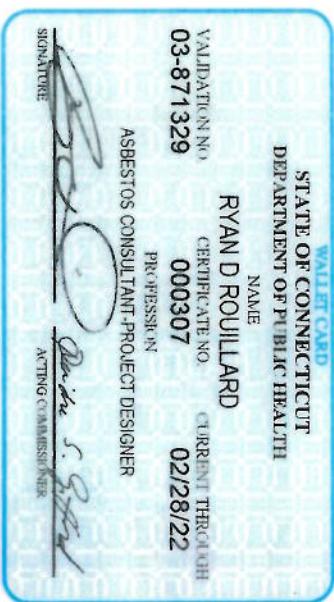
Walter P. —

This is to certify that

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

has completed requisite training by Video Conference, and has passed an examination for reaccreditation as:


Asbestos Inspector Refresher

pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

INSTITUTE FOR ENVIRONMENTAL EDUCATION

<u>Course Location</u>	<u>Course Dates</u>	<u>Examination Date</u>	<u>Expiration Date</u>
Zoom Video Conference	<u>November 18, 2021</u>	<u>November 18, 2021</u>	<u>November 18, 2022</u>
Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887	<u>21-3601-106-226296</u>		
			<i>Wendy P. F.</i> Training Director

Ryan D. Rouillard

Heather Hill Lane, Goffstown, NH 03045

This is to certify that
has completed the requisite training by Video Conference, and has passed an examination for
reaccreditation

Asbestos Designer Refresher

pursuant to Title II of the Toxic Substance Control Act, 15 U.S.C. 2646

INSTITUTE FOR ENVIRONMENTAL EDUCATION

Institute for Environmental Education 16 Upton Drive Wilmington, MA 01887

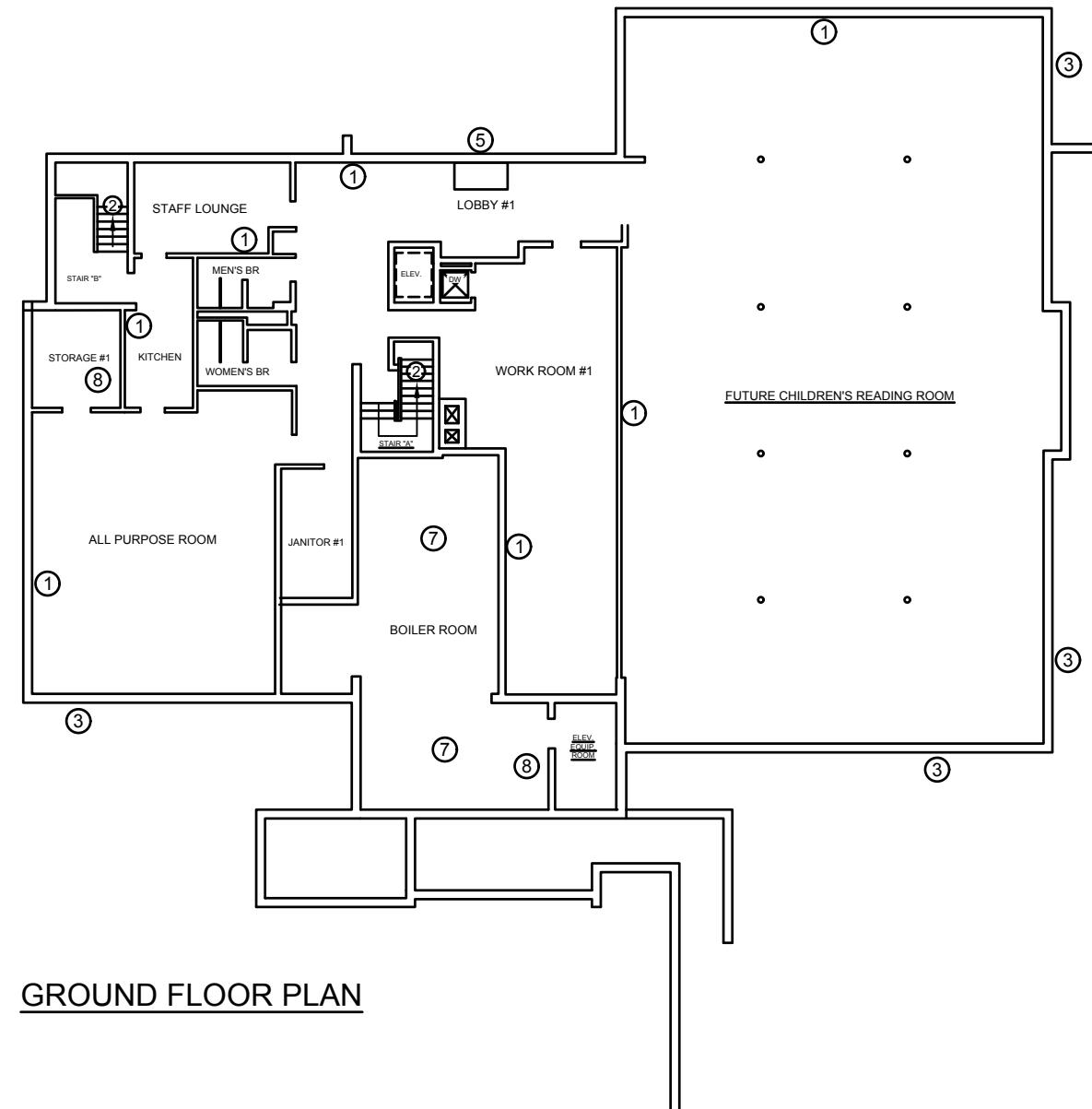
October 26, 2021

Course Dates

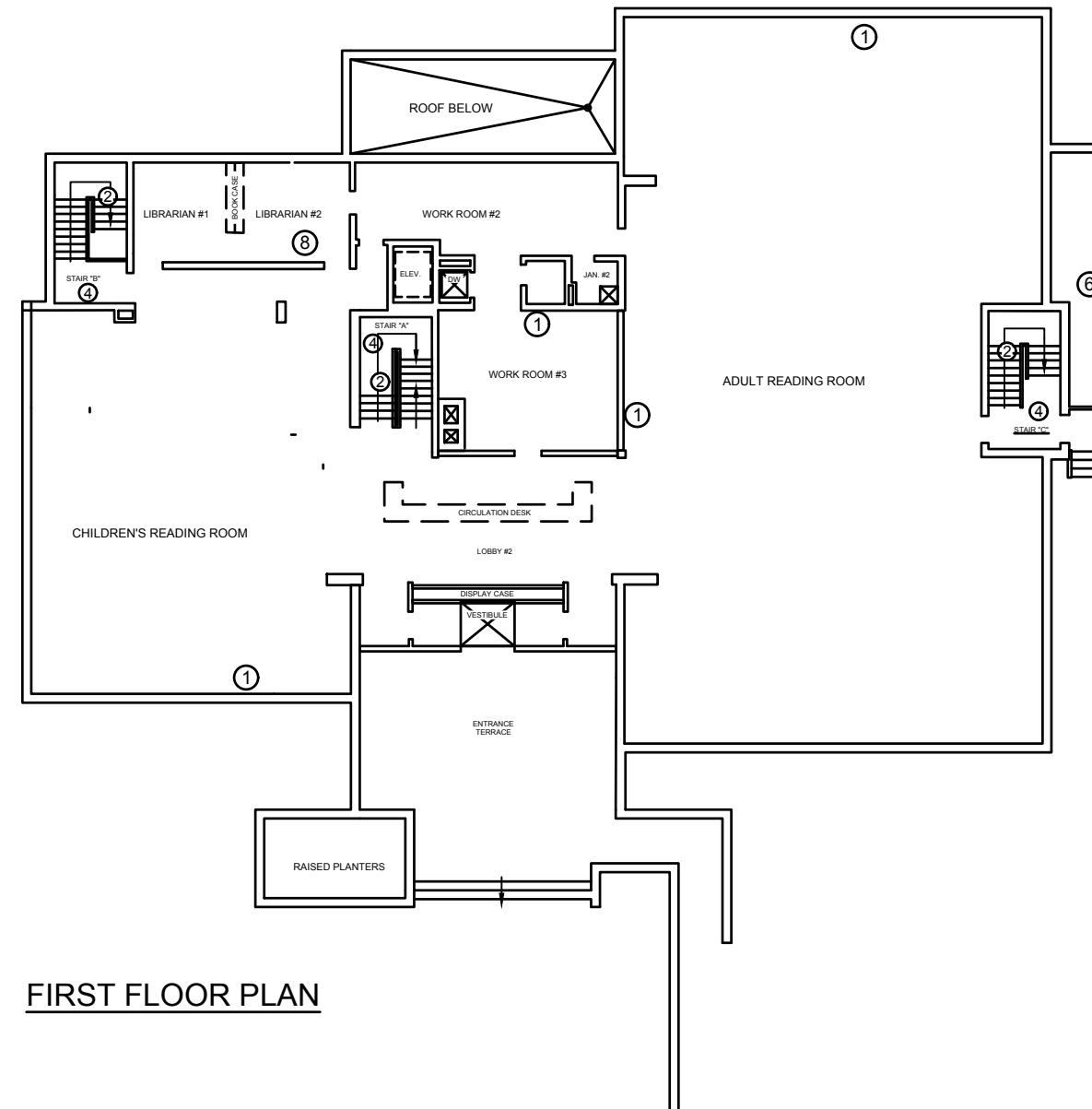
Course Location
Zoom Video Conference

October 26, 2021
October 26, 2021
October 26, 2022

Certificate Number


Expiration Date

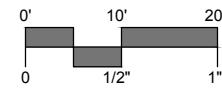
Training Director



APPENDIX E

DRAWING

GROUND FLOOR PLAN


FIRST FLOOR PLAN

LEGEND

Plan #	Material Description	Location
①	Residual Brown Adhesive	Cove Base (Ground and 1 st Floors)
②	Dark Brown Adhesive	Stair treads in Stairwells
③	Black Mastic	Exterior Foundation
④	9" grey with white streaks floor tile & Black mastic	South stairwell ground/1 st landings, central stairwell 1 st -2 nd landings, north stairwell 1 st -2 nd landings
⑤	Grey pliable door/window caulk	Exterior, Ground floor rear entry/vestibule doors and two (2) adjacent windows
⑥	Light grey hard exterior vent caulk	Exterior, 1 st floor – surrounding Northeast vent
⑦	White cloth flex connector	Ground floor – 2 mechanical rooms, 2 nd floor- mechanical 312 and book storage 310
⑧	Muddled fitting associated with fiberglass pipe insulation	Exposed (readily accessible) – Ground floor – storage adjacent to kitchen and mechanical room, 2 nd floor – mechanical 312 and book storage 310 <u>Confirmed and hidden above ceiling tiles</u> – Ground floor – Workroom 105 and lounge (above ceiling tiles) <u>Presumed</u> – Throughout ground floor rooms/areas and throughout all 1 st floor rooms/areas (above ceiling tiles), behind toilet/sink fixtures in all bathrooms on all floors

NOTES:

- WHITE CLOTH FLEX CONNECTIONOR (7) ASSOCIATED WITH SECOND FLOOR HVAC UNITS.
- MUDDED PIPE FITTINGS (8) THROUGHOUT.
- TRC CONSULTANTS SURVEY DETERMINATIONS MAY ALSO EXIST AND MAY NOT BE NOTED ON THIS PLAN IF NOT FOUND DURING SLR'S SURVEY WORK.

APPENDIX F

TRC REPORT

TABLE 1
BULK SAMPLE SUMMARY OF SUSPECT ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

Sample #	Sample Location	Type of Homogeneous Material	% and Type Asbestos
01	Gr Fl Kitchen	Yellow Mastic associated with FT1	ND
01		FT1-12" Blue w/Lt & Dk Specks Floor Tile	ND
02*	Gr Fl Kitchen	Yellow Mastic associated with FT1	ND
02*		FT1-12" Blue w/Lt & Dk Specks Floor Tile	ND
03	Storage Rm 106	Yellow Mastic w/black residual mastic associated with FT2	2% Chrysotile
03		FT2-12" Lt Blue Speckled Floor Tile & Yellow Mastic	ND +
04	Storage Rm 106	Yellow Mastic w/black residual mastic associated with FT2	NA/PS
04*		FT2-12" Lt Blue Speckled Floor Tile & Yellow Mastic	ND +
05	1 st Fl Staff Rm 202	Black Mastic associated with FT3	10% Chrysotile
05		FT3-9" Grey w/White Streaks Floor Tile	Trace Chrysotile +
06	1 st Fl Staff Rm 202	Black Mastic associated with FT3	NA/PS
06*		FT3-9" Grey w/White Streaks Floor Tile	2.1% Chrysotile
07	1 st Floor Bathroom 201	Yellow Mastic associated with FT4	ND
07		FT4-12" Lt Grey Speckled Floor Tile	ND
08*	1 st Floor Bathroom 201	Yellow Mastic associated with FT4	ND
08*		FT4-12" Lt Grey Speckled Floor Tile	ND
09	Ground Fl Community Rm	Green Sticky Carpet Glue (CG1)	ND
10*	Ground Fl Community Rm	Green Sticky Carpet Glue (CG1)	ND
11	1 st Fl Non-Fiction Rm	Yellow Gummy Carpet Glue w/black residual mastic (CG2)	2% Chrysotile
12	1 st Fl Non-Fiction Rm	Yellow Gummy Carpet Glue w/black residual mastic (CG2)	NA/PS
13	1 st Fl Staff Rm 202	Yellow/Brown Brittle Carpet Glue (CG3)	ND
14*	1 st Fl Staff Rm 202	Yellow/Brown Brittle Carpet Glue (CG3)	ND
15	2 nd Fl Kitchen/Break Rm 305	Lt Yellow Sticky Carpet Glue (CG4)	ND
16*	2 nd Fl Kitchen/Break Rm 305	Lt Yellow Sticky Carpet Glue (CG4)	ND
17	Gr Fl Kitchen	Lt Tan Cove base Glue (CB1)	3% Chrysotile

* Analyzed by EPA/600/R-93/116 with gravimetric reduction

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

ND Non-detected

+ Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive

Trace Asbestos was observed at a level <1%

** Quantified by PLM Point Counting techniques

TABLE 1
BULK SAMPLE SUMMARY OF SUSPECT ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

Sample #	Sample Location	Type of Homogeneous Material	% and Type Asbestos
18	Gr Fl Kitchen	Lt Tan Cove base Glue (CB1)	NA/PS
19	1 st Fl Non-Fiction Rm	Tan Cove base Glue (CB2)	Trace Chrysotile
20*	1 st Fl Non-Fiction Rm	Tan Cove base Glue (CB2)	Trace Chrysotile
21	1 st Fl Non-Fiction Rm	Residual Dk Brown Cove base Glue (CB3)	Trace Chrysotile
22*	1 st Fl Non-Fiction Rm	Residual Dk Brown Cove base Glue (CB3)	Trace Chrysotile
23**	Storage Behind Rm 106	Off-White Joint Compound (SHR1)	0.5% Chrysotile
23		(SHR1) Lt Grey Sheetrock	ND
24**	Storage Behind Rm 106	Off-White Joint Compound (SHR1)	0.5% Chrysotile
24		(SHR1) Lt Grey Sheetrock	ND
25	2 nd Fl Women's Bath	White Joint Compound (SHR2)	ND
		(SHR2) White Sheetrock	ND
26	2 nd Fl Women's Bath	White Joint Compound (SHR2)	ND
		(SHR2) White Sheetrock	ND
27	Gr Fl Hall o/s Janitor's Rm	White Skimcoat Plaster (PL1)	ND
		Tan Basecoat PL1	ND
28	Gr Fl Hall o/s Janitor's Rm	White Skimcoat Plaster (PL1)	ND
		Tan Basecoat PL1	ND
29	Gr Fl Hall o/s Janitor's Rm	White Skimcoat Plaster (PL1)	ND
		Tan Basecoat PL1	ND
30	Gr Fl Hall o/s Children's Rm	White Skimcoat Plaster (PL1)	ND
		Tan Basecoat PL1	ND
31	Gr Fl Hall o/s Children's Rm	White Skimcoat Plaster (PL1)	ND
		Tan Basecoat PL1	ND
32	Gr Fl Vestibule 101 Ceiling	Grey Basecoat PL2	ND
		White Skimcoat Ceiling Plaster (PL2)	ND
33	Gr Fl Vestibule 101 Ceiling	Grey Basecoat PL2	ND
		White Skimcoat Ceiling Plaster (PL2)	ND
34	Gr Fl Vestibule 101 Ceiling	Grey Basecoat PL2	ND
		White Skimcoat Ceiling Plaster (PL2)	ND
35	Gr Fl Men's Bathrm	White Ceramic Tile Grout (GR1)	ND

* Analyzed by EPA/600/R-93/116 with gravimetric reduction

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

ND Non-detected

+ Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive

Trace Asbestos was observed at a level <1%

** Quantified by PLM Point Counting techniques

TABLE 1
BULK SAMPLE SUMMARY OF SUSPECT ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

Sample #	Sample Location	Type of Homogeneous Material	% and Type Asbestos
36	Gr Fl Men's Bathrm	White Ceramic Tile Grout (GR1)	ND
37	Gr Fl Quiet Study Lounge	12" Worm/Pinhole Spline Ceiling Tile (CT1)	ND
38	Gr Fl Quiet Study Lounge	12" Worm/Pinhole Spline Ceiling Tile (CT1)	ND
39	Gr Fl Kitchen	2'x4' Worm/Pinhole Ceiling Tile (CT2)	ND
40	Gr Fl Kitchen	2'x4' Worm/Pinhole Ceiling Tile (CT2)	ND
41	Gr Fl Hall by Women's Rm	2'x2' Pinhole/Birdsfeet Ceiling Tile (CT3)	ND
42	Gr Fl Hall by Women's Rm	2'x2' Pinhole/Birdsfeet Ceiling Tile (CT3)	ND
43	2 nd Fl Kitchen/Break Rm 305	2'x2' Worm/Pinhole Ceiling Tile (CT4)	ND
44	2 nd Fl Kitchen/Break Rm 305	2'x2' Worm/Pinhole Ceiling Tile (CT4)	ND
45	2 nd Fl Women's Bathrm	2'x4' Pinhole Ceiling Tile (CT5)	ND
46	2 nd Fl Men's Bathrm	2'x4' Pinhole Ceiling Tile (CT5)	ND
47	Gr Fl Vestibule 101	Grey Pliable Door/Wdw Caulk (C1)	10% Chrysotile
48	Gr Fl Vestibule 101	Grey Pliable Door/Wdw Caulk (C1)	NA/PS
49	Ext. East Entrance	White Rubbery Ext Door/Wdw Caulk (C2)	ND
50*	Ext. East Entrance	White Rubbery Ext Door/Wdw Caulk (C2)	ND
51	Ext. NE Corner	Lt Grey Hard Ext Vent Caulk (C3)	3% Chrysotile
52	Ext. NE Corner	Lt Grey Hard Ext Vent Caulk (C3)	NA/PS
53	Gr Fl Quiet Study Lounge	Black Gummy Door Wdw Glaze (DWG1)	ND
54*	Gr Fl Quiet Study Lounge	Black Gummy Door Wdw Glaze (DWG1)	ND
55	2 nd Fl Book Storage 310	Tar/Foil FG Pipe Insulation Wrap (PW1)	ND
56*	2 nd Fl Book Storage 310	Tar/Foil FG Pipe Insulation Wrap (PW1)	ND
57	Gr Fl Lg Mech Rm	White Fiberglass Insulation Sealant (FIS1)	ND
58*	Gr Fl Lg Mech Rm	White Fiberglass Insulation Sealant (FIS1)	ND
59	Gr Fl Sm Mech Rm	White Cloth Flex Connector (FC1)	80% Chrysotile
60	Gr Fl Sm Mech Rm	White Cloth Flex Connector (FC1)	NA/PS
61	2 nd Fl Book Storage 310	Yellow FG Duct Insulation Glue (G1)	ND

* Analyzed by EPA/600/R-93/116 with gravimetric reduction

NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM

NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos

ND Non-detected

+ Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive

Trace Asbestos was observed at a level <1%

** Quantified by PLM Point Counting techniques

TABLE 1
BULK SAMPLE SUMMARY OF SUSPECT ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

Sample #	Sample Location	Type of Homogeneous Material	% and Type Asbestos
62*	2 nd Fl Book Storage 310	Yellow FG Duct Insulation Glue (G1)	ND
63	2 nd Fl Kitchen/Break Rm 305	White Sink Undercoating (SU1)	ND
64*	2 nd Fl Kitchen/Break Rm 305	White Sink Undercoating (SU1)	ND
65	2 nd Fl Book Storage 310	Gypsum Board Roof Decking (RD1)	ND
66	2 nd Fl Book Storage 310	Gypsum Board Roof Decking (RD1)	ND
67	Ext North Side	Black Tar Foundation Vapor Barrier (VB1)	20% Chrysotile
68	Ext North Side	Black Tar Foundation Vapor Barrier (VB1)	NA/PS
Sampled March 2017			
01	Vestibule 102-pipe hanger	MF1- muddled fitting associated with fiberglass pipe insulation	3% Chrysotile
02	Vestibule 102-large pipe	MF1- muddled fitting associated with fiberglass pipe insulation	3% Chrysotile
03	Vestibule 102-small pipe	MF1- muddled fitting associated with fiberglass pipe insulation	3% Chrysotile
Sampled November 2017			
01	Ground Floor-Storage Area	Wrapping over fiberglass pipe insulation	ND
02	Ground Floor-Storage Area	Wrapping over fiberglass pipe insulation	ND
03	Ground Floor-Storage Area	Wrapping over fiberglass pipe insulation	ND
04	Ground Floor-Lounge	Green carpet glue (CG4)	ND
05	Ground Floor-Lounge	Green carpet glue (CG4)	ND

- * Analyzed by EPA/600/R-93/116 with gravimetric reduction
- NA/PVA Not analyzed/positive via inseparable association with a confirmed positive ACM
- NA/PS Not analyzed/positive stop, homogeneous to sample proven to contain asbestos
- ND Non-detected
- + Although found to be negative by analysis, material is homogeneous to a determined ACM and therefore must be considered positive
- Trace Asbestos was observed at a level <1%
- ** Quantified by PLM Point Counting techniques

TABLES 2A and 2B
CONFIRMED/PRESUMED ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

2A: CONFIRMED ACM (NESHAP/AHERA CATEGORY) • LOCATION(S)	COMMENTS and RECOMMENDATIONS
Yellow Mastic w/black residual mastic associated with FT2 (Category I Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • Ground Floor -Storage Room 6 <p><i>Note: Although FT2 was found to contain <1% asbestos, it is homogeneous to a determined ACM and therefore must also be considered ACM if removed and/or disposed of.</i></p>	Material intact No action(s) required
FT3-9" Grey w/White Streaks Floor Tile and Associated Black Mastic (Category I Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • 1st Floor- Staff Room 202 (beneath carpet) • South Stairwell- Ground/1st Level Stair Landings • Central Stairwell-1st and 2nd Floor Landings • North Stairwell-1st and 2nd Floor Landings 	Material intact in all locations No action(s) required
CG2-Yellow Gummy Carpet Glue w/black residual mastic (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • 1st Floor- Throughout Fiction/Non-Fiction, Reference/Periodicals, and Offices 203/204 (beneath carpeting) • Central Stairwell-Ground Floor Landings (beneath carpeting) 	Material intact in all locations No action(s) required
CB1- Light Tan Cove base Glue (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • Ground Floor - Throughout Children's, Storage 106, Community Room, Kitchen, Lounge, Central Passage/Hall, Workroom, Office 103, and Vestibule 102 • 1st Floor-Historical 202 • South Stairwell- Ground/1st Level Stair Landings • Central Stairwell-1st and 2nd Floor Landings • North Stairwell-1st and 2nd Floor Landings 	Material intact in all locations No action(s) required
C1- Grey Pliable Exterior Door/ Window Caulk (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • Exterior, Ground Floor- Rear entry/vestibule doors and two (2) adjacent windows 	Material intact in all locations No action(s) required
C3- Light Grey Hard Exterior Vent Caulk (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • Exterior, 1st Floor level- Surrounding North East Vent 	Material intact No action(s) required

NESHAP Categories = friable, category I non-friable or category II non-friable
AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous
Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing
Category II Non-friable = all non-friable that is not Category I

Friable = crumbled, pulverized or reduced to powder by hand pressure when dry

TABLES 2A and 2B
CONFIRMED/PRESUMED ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

2A: CONFIRMED ACM (NESHAP/AHERA CATEGORY) • LOCATION(S)	COMMENTS and RECOMMENDATIONS
VB1-Exterior Black Tar Foundation Vapor Barrier (Category II Non-Friable; Miscellaneous) • Exterior, Ground level- Throughout North and East Sides of Foundation	Material intact/not easily accessible No action(s) required
MF1- Muddled Fittings associated with fiberglass insulation (Friable; TSI) 1. <u>Exposed (Readily Accessible)</u> • Ground Floor- Storage adjacent to Kitchen and Mechanical Room • 2 nd Floor- Mechanical 312 and Book Storage 310 2. <u>Confirmed and hidden above ceiling tiles</u> • Ground Floor- Workroom 105 and Lounge (above ceiling tiles) 3. <u>Presumed</u> • Throughout remaining Ground Floor Rooms/Areas and Throughout all 1 st Floor Rooms/Areas (above ceiling tiles) • Behind toilet/sink fixtures in all Bathrooms on all Floors.	1. Material, in general, found to be in fair shape with viable mold growth noted on most fittings. Visible debris were noted in the 2 nd Floor Book Storage Area. 2. Material, in general, found to be in poor shape with viable mold growth noted on most fittings. Visible debris were noted on ceiling tiles in small quantities. 3. Material is presumed to be in poor shape with viable mold growth. Visible debris are also presumed to be on ceiling tiles in small quantities.
<i>*Recommend cleanup of any debris in the 2nd Floor Book Storage 310 using a certified Abatement Contractor. Also recommend removal/replacement of all the easily accessible fittings in the mechanical areas during any mechanical work/upgrades. Further, it is recommended that staff use caution when removing ceiling tiles for access.</i>	
FC1-White Cloth Flex Connector (Category II Non-Friable; Miscellaneous) • Ground Floor – Two (2) Mechanical Rooms (~10 SF each) • 2 nd Floor- Mechanical 312 and Book Storage 310 (~6 SF each)	Material intact in all locations
<i>*Material can become friable easily and is subject to air erosion. Recommend replacement during any HVAC work/upgrades.</i>	

Continued

NESHAP Categories = friable, category I non-friable or category II non-friable

AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous

Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing

Category II Non-friable = all non-friable that is not Category I

Friable = crumbled, pulverized or reduced to powder by hand pressure when dry

TABLES 2A and 2B
CONFIRMED/PRESUMED ACM
PROSSER LIBRARY
BLOOMFIELD, CONNECTICUT

2B: PRESUMED ACM (NESHAP/AHERA CATEGORY)	COMMENTS and RECOMMENDATIONS
Stair Tread Glue (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • North/South/Central Stairwells 	Material intact in all locations No action(s) required
Vestibule Window Glazing (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • Ground Floor-Vestibule 101 windows (9 Total) 	Material intact in all locations No action(s) required
Exterior Window Glazing (Category II Non-Friable; Miscellaneous) <ul style="list-style-type: none"> • All Floors- Main Library windows throughout 	Material intact in all locations No action(s) required
Exterior-Roofing Materials <ul style="list-style-type: none"> • Roofing Tars throughout (Category II Non-Friable; Miscellaneous) • Vapor barriers, beneath slate (Category II Non-Friable; Miscellaneous) 	All Materials intact No action(s) required

NESHAP Categories = friable, category I non-friable or category II non-friable
AHERA Categories = thermal system insulation (TSI), surfacing material or miscellaneous
Category I Non-friable = packings, gaskets, resilient floor covering and asphalt roofing
Category II Non-friable = all non-friable that is not Category I

Friable = crumbled, pulverized or reduced to powder by hand pressure when dry

BULK ASBESTOS ANALYSIS REPORT

CLIENT: Town of Bloomfield

Lab Log #: 0051631
Project #: 287660.0001.0000
Date Received: 12/01/2017
Date Analyzed: 12/04/2017

Site: Library, Bloomfield, CT

POLARIZED LIGHT MICROSCOPY by EPA 600/R-93/116

Sample No.	Color	Homogenous	Multi-Layered	Layer No.	Other Matrix Materials	Asbestos %	Asbestos Type
01	Yellow (mastic)	No	Yes	1	---	ND	None
01	Light Blue/Dark Blue (tile)	No	Yes	2	---	ND	None
02*	Yellow (mastic)	No	Yes	1	---	ND	None
02*	Light Blue/Dark Blue (tile)	No	Yes	2	---	ND	None
03	Yellow/Black (mastic)	No	Yes	1	---	2%	Chrysotile
03	Light Blue (tile)	No	Yes	2	---	ND	None
04	--	--	--	--	--	NA/PS	--
04*	Light Blue (tile)	No	Yes	2	---	ND	None
05	Black (mastic)	No	Yes	1	---	10%	Chrysotile
05	Grey/White (tile)	No	Yes	2	---	Trace	Chrysotile
06	--	--	--	--	--	NA/PS	--
06*	Grey/White (tile)	No	Yes	2	---	2.1%	Chrysotile
07	Yellow (mastic)	No	Yes	1	---	ND	None
07	Light Grey (tile)	No	Yes	2	---	ND	None
08*	Yellow (mastic)	No	Yes	1	---	ND	None
08*	Light Grey (tile)	No	Yes	2	---	ND	None
09	Green (carpet glue)	Yes	No	--	---	ND	None
10*	Green (carpet glue)	Yes	No	--	---	ND	None

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS

NVLAP Lab Code 101424-0 AIHA-LAP,LLC #100122 CT #PH-0426 ME LA-0075, LB-0071 MA #AA000052 NY #10980 WV# LT000411
RI #AAL-007 TX #300354 VT #AL014538 LA#05011 VA #3333 000283 AZ #A20944 HI #L-09-004 NJ #CT004 CA #2907
CO# AL-15020 PHIL# 461 PA#68-03387

POLARIZED LIGHT MICROSCOPY by EPA 600/R-93/116

Sample No.	Color	Homogenous	Multi-Layered	Layer No.	Other Matrix Materials	Asbestos %	Asbestos Type
11	Yellow/ Black (carpet glue)	Yes	No	--	---	2%	Chrysotile
12	--	--	--	--	--	NA/PS	--
13	Yellow/Brown (carpet glue)	Yes	No	--	---	ND	None
14*	Yellow/Brown (carpet glue)	Yes	No	--	---	ND	None
15	Light Yellow (carpet glue)	Yes	No	--	---	ND	None
16*	Light Yellow (carpet glue)	Yes	No	--	---	ND	None
17	Brown (glue)	Yes	No	--	---	3%	Chrysotile
18	--	--	--	--	--	NA/PS	--
19	Tan/Brown (glue)	Yes	No	--	---	Trace	Chrysotile
20*	Tan/Brown (glue)	Yes	No	--	---	Trace	Chrysotile
21	Dark Brown (glue)	Yes	No	--	---	Trace	Chrysotile
22*	Dark Brown (glue)	Yes	No	--	---	Trace	Chrysotile
23	■ Off White (joint compound)	No	Yes	1	---	0.5%	Chrysotile
23	Light Grey (sheetrock)	No	Yes	2	2% cellulose	ND	None
24	■ Off White (joint compound)	No	Yes	1	---	0.5%	Chrysotile
24	Light Grey (sheetrock)	No	Yes	2	2% cellulose	ND	None
25	White (joint compound)	No	Yes	1	---	ND	None
25	White (sheetrock)	No	Yes	2	2% cellulose	ND	None
26	White (joint compound)	No	Yes	1	---	ND	None
26	White (sheetrock)	No	Yes	2	2% cellulose	ND	None
27	White (skim coat)	No	Yes	1	---	ND	None
27	Tan (base coat)	No	Yes	2	---	ND	None

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS

NVLAP Lab Code 101424-0 AIHA-LAP,LLC #100122 CT #PH-0426 ME LA-0075, LB-0071 MA #AA000052 NY #10980 WV# LT000411
RI #AAL-007 TX #300354 VT #AL014538 LA#05011 VA #3333 000283 AZ #A20944 HI #L-09-004 NJ #CT004 CA #2907
CO# AL-15020 PHIL# 461 PA#68-03387

POLARIZED LIGHT MICROSCOPY by EPA 600/R-93/116

Sample No.	Color	Homogenous	Multi-Layered	Layer No.	Other Matrix Materials		Asbestos %	Asbestos Type
28	White (skim coat)	No	Yes	1	---	---	ND	None
28	Tan (base coat)	No	Yes	2	---	---	ND	None
29	White (skim coat)	No	Yes	1	---	---	ND	None
29	Tan (base coat)	No	Yes	2	---	---	ND	None
30	White (skim coat)	No	Yes	1	---	---	ND	None
30	Tan (base coat)	No	Yes	2	---	---	ND	None
31	White (skim coat)	No	Yes	1	---	---	ND	None
31	Tan (base coat)	No	Yes	2	---	---	ND	None
32	White (skim coat)	No	Yes	1	---	---	ND	None
32	Grey (base coat)	No	Yes	2	---	---	ND	None
33	White (skim coat)	No	Yes	1	---	---	ND	None
33	Grey (base coat)	No	Yes	2	---	---	ND	None
34	White (skim coat)	No	Yes	1	---	---	ND	None
34	Grey (base coat)	No	Yes	2	---	---	ND	None
35	White (grout)	Yes	No	--	---	---	ND	None
36	White (grout)	Yes	No	--	---	---	ND	None
37	Grey (ceiling tile)	Yes	No	--	95%	mineral wool	ND	None
38	Grey (ceiling tile)	Yes	No	--	95%	mineral wool	ND	None
39	White/Grey (ceiling tile)	Yes	No	--	60% 10%	cellulose mineral wool	ND	None
40	White/Grey (ceiling tile)	Yes	No	--	60% 10%	cellulose mineral wool	ND	None
41	White/Grey (ceiling tile)	Yes	No	--	60% 10%	cellulose mineral wool	ND	None
42	White/Grey (ceiling tile)	Yes	No	--	60% 10%	cellulose mineral wool	ND	None

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS

NVLAP Lab Code 101424-0 AIHA-LAP, LLC #100122 CT #PH-0426 ME LA-0075, LB-0071 MA #AA000052 NY #10980 WV# LT000411
RI #AAI-007 TX #300354 VT #AL014538 LA#05011 VA #3333 000283 AZ #A20944 HI #L-09-004 NJ #CT004 CA #2907
CO# AL-15020 PHIL# 461 PA#68-03387

POLARIZED LIGHT MICROSCOPY by EPA 600/R-93/116

Sample No.	Color	Homogenous	Multi-Layered	Layer No.	Other Matrix Materials		Asbestos %	Asbestos Type
43	White/Grey (ceiling tile)	Yes	No	--	40% 40%	cellulose mineral wool	ND	None
44	White/Grey (ceiling tile)	Yes	No	--	40% 40%	cellulose mineral wool	ND	None
45	White/Grey (ceiling tile)	Yes	No	--	10% 80%	cellulose mineral wool	ND	None
46	White/Grey (ceiling tile)	Yes	No	--	10% 80%	cellulose mineral wool	ND	None
47	Grey (caulk)	Yes	No	--	---	---	10%	Chrysotile
48	--	--	--	--	---	---	NA/PS	--
49	White (caulk)	Yes	No	--	---	---	ND	None
50♣	White (caulk)	Yes	No	--	---	---	ND	None
51	Light Grey (caulk)	Yes	No	--	---	---	3%	Chrysotile
52	--	--	--	--	---	---	NA/PS	--
53	Black (glaze)	Yes	No	--	---	---	ND	None
54♣	Black (glaze)	Yes	No	--	---	---	ND	None
55	Silver/Black (insulation wrap)	Yes	No	--	60%	cellulose	ND	None
56♣	Silver/Black (insulation wrap)	Yes	No	--	---	---	ND	None
57	White (insulation sealant)	Yes	No	--	20%	cellulose	ND	None
58♣	White (insulation sealant)	Yes	No	--	---	---	ND	None
59	White (flex connector)	Yes	No	--	10%	synthetic fiber	80%	Chrysotile
60	--	--	--	--	---	---	NA/PS	--
61	Yellow (insulation glue)	Yes	No	--	---	---	ND	None
62♣	Yellow (insulation glue)	Yes	No	--	---	---	ND	None
63	White (sink undercoating)	Yes	No	--	30%	cellulose	ND	None

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS

NVLAP Lab Code 101424-0 AIHA-LAP,LLC #100122 CT #PH-0426 ME LA-0075, LB-0071 MA #AA000052 NY #10980 WV# LT000411
 RI #AAL-007 TX #300354 VT #AL014538 LA#05011 VA #3333 000283 AZ #A20944 HI #L-09-004 NJ #CT004 CA #2907
 CO# AL-15020 PHIL# 461 PA#68-03387

POLARIZED LIGHT MICROSCOPY by EPA 600/R-93/116

Sample No.	Color	Homogenous	Multi-Layered	Layer No.	Other Matrix Materials	Asbestos %	Asbestos Type
64*	White (sink undercoating)	Yes	No	--	---	ND	None
65	Light Grey (gypsum roof decking)	Yes	No	--	---	ND	None
66	Light Grey (gypsum roof decking)	Yes	No	--	---	ND	None
67	Black (foundation vapor barrier)	Yes	No	--	---	20%	Chrysotile
68	--	--	--	--	--	NA/PS	--

■ Analyzed by 400 Point Count Method

Reporting limit- asbestos present at 0.25% for 400 Point Count Method

ND- No asbestos was detected by 400 Point Count Method

<0.25%- Trace concentrations of asbestos are concentrations that are less than or equal 1% including samples that contain zero asbestos points out of 400 nonempty points, but did contain asbestos positively identified by PLM.

*Samples analyzed by EPA/600/R-93/116 with gravimetric reduction

Reporting limit- asbestos present at 1%

ND - asbestos was not detected

Trace - asbestos was observed at level of less than 1%

NA/PS - Not Analyzed / Positive Stop

SNA- Sample Not Analyzed- See Chain of Custody for details

Note: Polarized-light microscopy is not consistently reliable in detecting asbestos in floor coverings and similar non-friable organically bound materials. In those cases, EPA recommends, and certain states (e.g. NY) require, that negative results be confirmed by quantitative transmission electron microscopy.

The Laboratory at TRC follows the EPA's Interim Method for the Determination of Asbestos in Bulk Insulation 1982 (EPA 600/M4-82-020) Bulk Analysis Code 18/A01 and the EPA recommended Method for the Determination of Asbestos in Bulk Building Materials July 1993, R.L. Perkins and B.W. Harvey, (EPA/600/R-93/116) Bulk Analysis Code 18/A03, which utilize polarized light microscopy (PLM). Our analysts have completed an accredited course in asbestos identification. TRC's Laboratory is accredited under the National Voluntary Laboratory Accreditation Program (NVLAP), for Bulk Asbestos Fiber Analysis, NVLAP Code 18/A01, effective through June 30, 2018. TRC is accredited by the AIHA Laboratory Accreditation Programs (AIHA-LAP), LLC in the Industrial Hygiene Program (IHLAP) for PLM effective through October 1, 2018. Asbestos content is determined by visual estimate unless otherwise indicated. Quality Control is performed in-house on at least 10% of samples and QC data related to the samples is available upon written request from client.

This report shall not be reproduced, except in full, without the written approval of TRC. This report must not be used by the client to claim product endorsement by NVLAP or any agency of the U.S. Government. This report relates only to the items tested.

Analyzed by: K. Williamson

Kathleen Williamson, Laboratory Manager

Reviewed by:

Cathryn Lenire
Cathryn Lenire, Approved Signatory

Date Issued

12/05/2017

TRC LABORATORY ASBESTOS ANALYTICAL ACCREDITATIONS

NVLAP Lab Code 101424-0 RI #AAL-007 TX #300354 CO# AL-15020	AIHA-LAP,LLC #100122 CT #PH-0426 VT #AL014538 LA#05011 VA #3333 000283 PHIL# 461	ME LA-0075. LB-0071 MA #AA000052 AZ #A20944 HI #L-09-004 NJ #CT004 CA #2907 PA#68-03387	NY #10980 WV# LT000411
---	--	---	------------------------

**ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY**

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

PROJECT NUMBER 287660.0000/0.000YD	PROJECT NAME Town of Bloomfield-Prrosser Library O & M Survey	PARAMETERS			TURNAROUND TIME			LAB ID #: 51231		
		PLM:	8hr	24hr	X	48hr	3day			
SIGNATURE	INSPECTOR	J. Gentile/D. Heelon	POINT COUNT (IF >1% & <10%)							
FIELD SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION						
COMB	TIME	TYPE	GRAB	PLM EPA 600/R33/116 (Positive Stop) (Parametric reduction)						
01	11/30/17	744	X	ANALYZE BY LAYER (IF PLM SERIES NEG)						
02	11/30/17	746	X	POINT COUNT (IF >1% & <10%)						
03	11/30/17	818	X	PLM EPA 600/R33/116 (Positive Stop) (Parametric reduction)						
04	11/30/17	819	X	POINT COUNT (IF >1% & <10%)						
05	11/30/17	935	X	PLM EPA 600/R33/116 (Positive Stop) (Parametric reduction)						
06	11/30/17	937	X	POINT COUNT (IF >1% & <10%)						
07	12/1/17	900	X	PLM EPA 600/R33/116 (Positive Stop) (Parametric reduction)						
08	12/1/17	900	X	POINT COUNT (IF >1% & <10%)						

Relinquished by (Signature)	Date: 12/1/17	Received by: (Signature) 12/1/17	Relinquished by: (Signature)	Date:	Received by: (Signature)
(Printed)	Time: 13:00	(Printed)	Time: (Printed)	Time: (Printed)	Time: (Printed)
Jonathan Gentile			Condition of Samples: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Comments: Page 1 of 7	
Remarks:					

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

**ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY**

*Edition: October 2009
Supersede Previous Edition*

5/1/03

LAB ID #.

TURNAROUND TIME

PROJECT NUMBER	PROJECT NAME	PARAMETERS			ITEM:	ITEM:	TIME:	TIME:	TIME:
		PLM:	8hr	24hr					
287660.0000.0001	Town of Bloomfield-Prosser Library O & M Survey								
SIGNATURE	INSPECTOR	J. Gentle/D. Heelon							

FIELD SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION			MATERIAL		
				COMP	GRAB		POINT COUNT (IF >1% & <10%)	ANALYZE BY LAYER (PM EPA 600/R93/116 (POSITIVE STOP) (w/gravimetric reduction))	ITEM NY NBR 198.4 (IF PLM SERIES NEG)
09	11/30/17	804	X	Ground Fl Community Rm	X				Green Sticky Carpet Glue (CG1)
10	11/30/17	806	X	Ground Fl Community Rm	X				Green Sticky Carpet Glue (CG1)
11	11/30/17	910	X	1 st Fl Non-Fiction Rm	X				Yellow Gummy Carpet Glue (CG2)
12	11/30/17	912	X	1 st Fl Non-Fiction Rm	X				Yellow Gummy Carpet Glue (CG2)
13	11/30/17	932	X	1 st Fl Staff Rm 202	X				Yellow/Brown Brittle Carpet Glue (CG3)
14	11/30/17	933	X	1 st Fl Staff Rm 202	X				Yellow/Brown Brittle Carpet Glue (CG3)
15	11/30/17	1002	X	2 nd Fl Kitchen/Break Rm 305	X				Lt Yellow Sticky Carpet Glue (CG4)
16	11/30/17	1004	X	2 nd Fl Kitchen/Break Rm 305	X				Lt Yellow Sticky Carpet Glue (CG4)
17	11/30/17	748	X	Gr Fl Kitchen	X				Lt Tan Covebase Glue (CB1)
18	11/30/17	749	X	Gr Fl Kitchen	X				Lt Tan Covebase Glue (CB1)
19	11/30/17	902	X	1 st Fl Non-Fiction Rm	X				Tan Covebase Glue (CB2)

Relinquished by: (Signature)	Date: 12/1/17	Received by: (Signature) <i>John Gentle</i>	Relinquished by: (Signature) <i>John Gentle</i>	Date: <i>12/1/17</i>	Received by: (Signature) <i>John Gentle</i>
(Printed)	Time: <i>1:30pm</i>	(Printed)	(Printed)	(Printed)	(Printed)
Remarks:	Condition of Samples: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Acceptable: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Comments:	Page 2 of 7	

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

**ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY**

*Edition: October 2009
Supersede Previous Edition*

PROJECT NUMBER	PROJECT NAME			PARAMETERS	TURNAROUND TIME	LAB ID #.	51631
	Town of Bloomfield-Prosser Library O & M Survey						
TIME	24hr	48hr	3day	5day			
PROJECT NUMBER	287660.0000.0001	INSPECTOR	J. Gentile/D. Heelon	TEM NY NOB 198.4 TEM PLM SERIES NEG (IF PLM SERIES NEG)			
FIELD SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION	MATERIAL		
20	11/30/17	904	X	1 st Fl Non-Fiction Rm	X		
21	11/30/17	906	X	1 st Fl Non-Fiction Rm	X		
22	11/30/17	908	X	1 st Fl Non-Fiction Rm	X		
23	11/30/17	809	X	Storage Behind Rm 106	X		
24	11/30/17	810	X	Storage Behind Rm 106	X		
25	12/1/17	828	X	2 nd Fl Women's Bath	X		
26	12/1/17	829	X	2 nd Fl Women's Bath	X		
27	12/1/17	734	X	Gr Fl Hall o/s Janitor's Rm	X		
28	12/1/17	735	X	Gr Fl Hall o/s Janitor's Rm	X		
29	12/1/17	736	X	Gr Fl Hall o/s Janitor's Rm	X		

Relinquished by: (Signature)	Date: 12/1/17	Received by: (Signature) 12/1/17	Relinquished by: (Signature)	Date: Received by: (Signature)
(Printed)	Time: 13:00	(Printed)	(Printed)	Time: (Printed)
Jonathan Gentile				
Remarks:	Condition of Samples: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Acceptable: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Comments: Page 3 of 7	

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

**ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY**

*Edition: October 2009
Supersede Previous Edition*

PROJECT NUMBER	PROJECT NAME			PARAMETERS	LAB ID #. <i>5-1-2-3-1</i>	TURNAROUND TIME
	Town of Bloomfield-Prosser Library O & M Survey					
SIGNATURE	INSPECTOR	ANALYZE BY LAYER PLM EPA 600/R93/116 (w/gravimetric reduction) (POSITIVE STOP)			POINT COUNT (IF >1% & <10%) ITEM NY N0R 198.4 (IF PLM SERIES NEG)	MATERIAL
FIELD SAMPLE NUMBER	DATE	TIME	TYPE	SAMPLE LOCATION		
30	12/1/17	800	X	Gr Fl Hall o/s Children's Rm	X	Tan Basecoat/White Skimcoat Plaster (PL1)
31	12/1/17	800	X	Gr Fl Hall o/s Children's Rm	X	Tan Basecoat/White Skimcoat Plaster (PL1)
32	12/1/17	740	X	Gr Fl Vestibule 101 Ceiling	X	Grey Basecoat/White Skimcoat Ceiling Plaster (PL2)
33	12/1/17	740	X	Gr Fl Vestibule 101 Ceiling	X	Grey Basecoat/White Skimcoat Ceiling Plaster (PL2)
34	12/1/17	741	X	Gr Fl Vestibule 101 Ceiling	X	Grey Basecoat/White Skimcoat Ceiling Plaster (PL2)
35	11/30/17	813	X	Gr Fl Men's Bathrm	X	White Ceramic Tile Grout (GR1)
36	11/30/17	814	X	Gr Fl Men's Bathrm	X	White Ceramic Tile Grout (GR1)
37	11/30/17	734	X	Gr Fl Quiet Study Lounge	X	12" Worm/Pinhole Spine Ceiling Tile (CT1)
38	11/30/17	736	X	Gr Fl Quiet Study Lounge	X	12" Worm/Pinhole Spine Ceiling Tile (CT1)
39	11/30/17	739	X	Gr Fl Kitchen	X	2'x4' Worm/Pinhole Ceiling Tile (CT2)
40	11/30/17	739	X	Gr Fl Kitchen	X	2'x4' Worm/Pinhole Ceiling Tile (CT2)

Relinquished by: (Signature) <i>J. Gentile</i>	Date: 12/1/17	Received by: (Signature) <i>J. Gentile</i>	Relinquished by: (Signature) <i>J. Gentile</i>	Date: <i>12/1/17</i>	Received by: (Signature)
(Printed) Jonathan Gentile	Time: <i>1:30 p</i>	(Printed) <i>1:30 p</i>	(Printed)	Time: <i>1:30 p</i>	Received by: (Signature)
Remarks:	Condition of Samples: Acceptable: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>			Comments: <i>Comments</i>	Page 4 of 7

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

**ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY**

*Edition: October 2009
Supersede Previous Edition*

5 / 1 / 3

PROJECT NUMBER	PROJECT NAME	PARAMETERS			POINT COUNT (DF > 1% & < 10%)	ANALYZE BY LAYER (PLM EPA 600/R93/116 POSITIVE STOP) (W/ geometric reduction)	MATERIAL (PL NY NOB 1984 ITEM NY NOB 1984 (IF PLM SERIES NEG)	LAB ID #.		TURNAROUND TIME				
		PLM:	8hr	24hr				PLM:	8hr	24hr	X	48hr	3day	5day
PROJECT NUMBER	PROJECT NAME	DATE	TIME	TYPE	SAMPLE LOCATION		PARAMETERS	PLM:	8hr	24hr	X	48hr	3day	5day
FIELD SAMPLE NUMBER	INSPECTOR	J. Gentile/D. Heelon												
41	11/30/17	755	X	Gr Fl Hall by Women's Rm	X									
42	11/30/17	757	X	Gr Fl Hall by Women's Rm	X									
43	11/30/17	956	X	2nd Fl Kitchen/Break Rm	305	X								
44	11/30/17	957	X	2nd Fl Kitchen/Break Rm	305	X								
45	12/1/17	830	X	2nd Fl Women's Bathrm		X								
46	12/1/17	831	X	2nd Fl Men's Bathrm		X								
47	11/30/17	838	X	Gr Fl Vestibule 101		X								
48	11/30/17	840	X	Gr Fl Vestibule 101		X								
49	12/1/17	940	X	Ext. East Entrance		X								
50	12/1/17	941	X	Ext. East Entrance		X								
51	12/1/17	935	X	Ext. NE Corner		X								

Relinquished by: (Signature)	Date: 12/1/17	Received by: (Signature) / 2 / 1 / / /	Relinquished by: (Signature)	Date:	Received by: (Signature)
(Printed)		(Printed)	(Printed)		
Jonathan Gentile	Time: / 3 0 0			Time:	(Printed)
Remarks:	Condition of Samples: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Acceptable: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Comments:	Page 5 of 7	

ASBESTOS BULK SAMPLING CHAIN OF CUSTODY

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692

PROJECT NUMBER		PROJECT NAME		PARAMETERS		TURNAROUND TIME					
287660.0000.0001		Town of Bloomfield-Prosser Library O & M Survey				PLM:	8hr	24hr	X	48hr	3day
SIGNATURE		INSPECTOR				TEM:	24hr	48hr		3day	5day
FIELD SAMPLE NUMBER	DATE	TIME	COMP	GRAB	TYPE	SAMPLE LOCATION					
52	12/1/17	936	X	Ext. NE Corner	X						
53	11/30/17	847	X	Gr Fl Quiet Study Lounge	X						
54	11/30/17	848	X	Gr Fl Quiet Study Lounge	X						
55	11/30/17	843	X	2 nd Fl Book Storage 310	X						
56	11/30/17	843	X	2 nd Fl Book Storage 310	X						
57	11/30/17	827	X	Gr Fl Lg Mech Rm	X						
58	11/30/17	828	X	Gr Fl Lg Mech Rm	X						
59	11/30/17	822	X	Gr Fl Sm Mech Rm	X						
60	11/30/17	823	X	Gr Fl Sm Mech Rm	X						
61	12/1/17	840	X	2 nd Fl Book Storage 310	X						
62	12/1/17	841	X	2 nd Fl Book Storage 310	X						

Relinquished by: (Signature) 		Date: 12/1/17	Received by: (Signature) 	Relinquished by: (Signature) 	Date: <input type="text"/>
(Printed) Jonathan Gentile		Time: <input type="text"/>	(Printed)	(Printed)	Time: <input type="text"/>
Remarks: <input type="text"/>		Condition of Samples: Acceptable: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>			Comments: <input type="text"/>

21 GRIFFIN ROAD NORTH
WINDSOR, CONNECTICUT 06095
TELEPHONE (860) 298-9692
FAX (860) 298-6380

ASBESTOS BULK SAMPLING
CHAIN OF CUSTODY

5-1 to 31

LAB ID #.

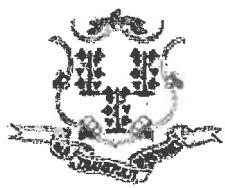
TURNAROUND TIME

PROJECT NUMBER	PROJECT NAME	PARAMETERS			PLM:	8hr	24hr	X	48hr	3day
		TIME	TEMP:	TYPE						
287660.0000.0001	Town of Bloomfield-Prosser Library O & M Survey									

SIGNATURE

INSPECTOR

J. Gentile/D. Heelon


ANALYZE BY LAYER

MATERIAL

FIELD SAMPLE NUMBER	DATE	TIME	COMP	GRAB	SAMPLE LOCATION			POINT COUNT (IF >1% & <10%)				PLM NY NBR 1984 (IF PLM SERIES NEG)
					TYPE							
63	11/30/17	953	X	X	2 nd Fl Kitchen/Break Rm 305		X					White Sink Undercoating (SUI)
64	11/30/17	954	X	X	2 nd Fl Kitchen/Break Rm 305		X					White Sink Undercoating (SUI)
65	11/30/17	1008	X	X	2 nd Fl Book Storage 310		X					Gypsum Board Roof Decking (RD1)
66	11/30/17	1010	X	X	2 nd Fl Book Storage 310		X					Gypsum Board Roof Decking (RD1)
67	12/1/17	930	X	X	Ext North Side		X					Black Tar Foundation Vapor Barrier (VB1)
68	12/1/17	930	X	X	Ext North Side		X					Black Tar Foundation Vapor Barrier (VB1)

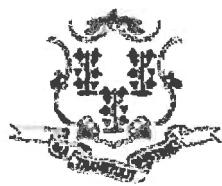
Relinquished by: (Signature)	Date: 12/1/17	Received by: (Signature)	Relinquished by: (Signature)	Date:	Received by: (Signature)
(Printed)	Time:	(Printed)	(Printed)	Time:	(Printed)
Jonathan Gentile					
Remarks:		Condition of Samples: Yes <input checked="" type="checkbox"/> No <input type="checkbox"/>	Comments:		Page 7 of 7

Date	Analyst	Lab Log #	Sample ID	Crucible ID	g crucible	plus sample	g after 480°	Residue	decimal	% Asb	% Asb
12/4/2017	KW	51631	02M	4	18.57	18.5933	18.5792	0.395	0.00	0.00	0.00
			02T	8	16.8795	16.9096	16.9046	0.834	0.00	0.00	0.00
			04T	47	20.4119	20.458	20.4508	0.844	0.00	0.00	0.00
			06T	48	20.6238	20.6597	20.6491	0.705	3.00	2.11	2.11
			08M	52	18.8222	18.8693	18.8406	0.391	0.00	0.00	0.00
			08T	58	21.3683	21.4171	21.4086	0.826	0.00	0.00	0.00
			10	59	22.2337	22.2848	22.2567	0.450	0.00	0.00	0.00
			14	61	19.4811	19.5081	19.4874	0.233	0.00	0.00	0.00
			16	63	19.6	19.6645	19.6306	0.474	0.00	0.00	0.00
			20	64	19.7768	19.8185	19.7908	0.336	Trace	#VALUE!	#VALUE!
			22	68	17.4649	17.5267	17.4933	0.460	Trace	#VALUE!	#VALUE!
			50	76	17.3548	17.4312	17.3928	0.497	0.00	0.00	0.00
			54	120	26.5871	26.6162	26.5946	0.258	0.00	0.00	0.00
			56	130	20.9385	21.0148	20.948	0.125	0.00	0.00	0.00
			58	132	19.1114	19.2595	19.19	0.531	0.00	0.00	0.00
			62	133	19.2945	19.3791	19.309	0.171	0.00	0.00	0.00
			64	135	17.8695	17.9184	17.9051	0.728	0.00	0.00	0.00

State of Connecticut

Lookup Detail View

Name**Name**


JONATHAN D GENTILE

License Information

lookup

License Type	License Number	Expiration Date	Granted Date	License Name	License Status	Licensure Actions or Pending Charges
Asbestos Consultant-Inspector	603	10/31/2018	11/10/2004	Jonathan D. Gentile	ACTIVE	None

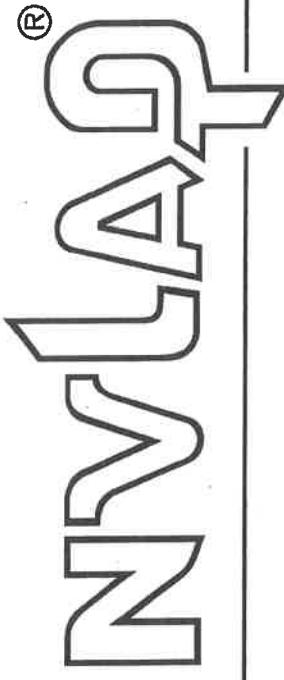
Generated on: 12/21/2017 2:34:41 PM

State of Connecticut

Lookup Detail View

Name**Name**

DAVID M HEELON


License Information

lookup

License Type	License Number	Expiration Date	Granted Date	License Name	License Status	Licensure Actions or Pending Charges
Asbestos Consultant-Inspector	635	10/31/2018	10/27/2005	David M. Heelon	ACTIVE	None

Generated on: 12/21/2017 2:37:15 PM

United States Department of Commerce
National Institute of Standards and Technology

Certificate of Accreditation to ISO/IEC 17025:2005

NVLAP LAB CODE: 101424-0

TRC Environmental Corporation
Windsor, CT

*is accredited by the National Voluntary Laboratory Accreditation Program for specific services,
listed on the Scope of Accreditation, for:*

Asbestos Fiber Analysis

*This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005.
This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality
management system (refer to joint ISO/ILAC-IAF Communique dated January 2009).*

2017-07-01 through 2018-06-30
Effective Dates

For the National Voluntary Laboratory Accreditation Program

Arthur S. Shulman

State of Connecticut. Department of Public Health
Approved Environmental Laboratory

THIS IS TO CERTIFY THAT THE LABORATORY DESCRIBED BELOW HAS BEEN APPROVED BY THE STATE DEPARTMENT OF PUBLIC HEALTH PURSUANT TO APPLICABLE PROVISIONS OF THE PUBLIC HEALTH CODE AND GENERAL STATUTES OF CONNECTICUT, FOR MAKING THE EXAMINATIONS, DETERMINATIONS OR TESTS SPECIFIED BELOW WHICH HAVE BEEN AUTHORIZED IN WRITING BY THAT DEPARTMENT.

TRC ENVIRONMENTAL CORPORATION

LOCATED AT 21 Griffin Road North IN Windsor, CT 06095

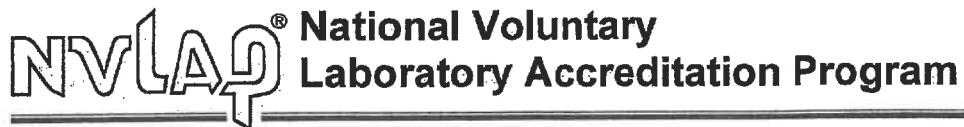
AND REGISTERED IN THE NAME OF Erik Plimpton

THIS CERTIFICATE IS ISSUED IN THE NAME OF Kathleen Williamson WHO HAS BEEN DESIGNATED
BY THE REGISTERED OWNER/AUTHORIZED AGENT TO BE IN CHARGE OF THE LABORATORY WORK COVERED BY THIS CERTIFICATE OF
APPROVAL AS FOLLOWS:

BUILDING MATERIALS
ASBESTOS FIBERS - PCM
BULK IDENTIFICATION - PLM

SEE COMPUTER PRINTOUT FOR SPECIFIC TESTS APPROVED

THIS CERTIFICATE EXPIRES DECEMBER 31, 2017 AND IS REVOCABLE FOR CAUSE BY THE STATE DEPARTMENT OF PUBLIC HEALTH
DATED AT HARTFORD, CONNECTICUT, THIS 7th DAY OF December 2015



Registration No.

PH-0426

SUZANNE BLANCAYLOR, MS
CHIEF, ENVIRONMENTAL HEALTH SECTION

A handwritten signature in black ink, appearing to read "Suzanne Blancaylor, MS".

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2005

TRC Environmental Corporation

21 Griffin Road North
Windsor, CT 06095
Ms. Kathleen Williamson
Phone: 860-298-6392 Fax: 860-298-6214
Email: kwilliamson@trcsolutions.com
<http://www.trcsolutions.com>

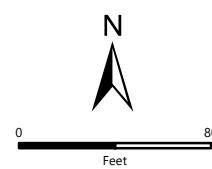
ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101424-0

Bulk Asbestos Analysis

<u>Code</u>	<u>Description</u>
18/A01	EPA -- Appendix E to Subpart E of Part 763 -- Interim Method of the Determination of Asbestos in Bulk Insulation Samples
18/A03	EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

For the National Voluntary Laboratory Accreditation Program



SLR
45 GLASTONBURY BLVD
1ST FL
GLASTONBURY, CT 06033
860.400.5680

PROPOSED PHASE II ESI

PHASE I ENVIRONMENTAL SITE ASSESSMENT
TOWN OF BLOOMFIELD, PROSSER LIBRARY
1 TUNXIS AVENUE
BLOOMFIELD, CONNECTICUT

SCALE	1" = 80'
DATE	4/26/2022
PROJ. NO.	144.12571.00015

FIG. 3

January 25, 2023

Downes Construction Company
200 Stanley Street
New Britain, Connecticut 06051

Re: Phase II-III Subsurface Investigation
Prosser Library, Bloomfield, Connecticut
GeoQuest Project No. 4130

Gentlemen/Ladies,

GeoQuest, Inc. (GeoQuest) has completed a Phase II-III Subsurface Investigation at the above referenced property (the “site” or “subject property”) in Bloomfield, Connecticut. The purpose of this assessment was to collect additional soil and groundwater data to be used in developing a soil management and groundwater de-watering plan. Based on the proposed site redevelopment plans, there will be excess soil that will need to be removed from the site, and some amount of de-watering may be necessary during construction of the new building.

This report has been prepared for Downes Construction Company, the Town of Bloomfield, and their counsel. Only the parties for whom this report was originally prepared, and other specifically named parties, may make use of and rely upon the information in this report, in its entirety, in accordance with GeoQuest’s General Terms and Conditions¹.

Background

The entire library redevelopment project consists of three abutting parcels. Two of the parcels, 1 Tunxis Avenue (Prosser Library) and 3 Tunxis Avenue (former Masonic Lodge) are located on the east side of Wash Brook, and total 1.06 acres. The third parcel, 6 Mountain Road (former Riley Lumber) is located on the west side of Wash Brook, and is 2.54 acres. Phase I and II investigations were conducted by SLR International Corporation (SLR) in April 2022, and GeoQuest conducted additional research of the site history in November 2022. The investigations indicated the following:

1 Tunxis Avenue: Two underground storage tanks (USTs) have been located at the site. One tank has been fully assessed, and sampling data collected during the tank removal and the SLR Phase II did not identify any contamination associated with this tank.

Some amount of soil remediation was performed when the second UST was removed. It is not clear from historical documentation if remediation was complete. The location of this tank is not documented.

¹ The terms and conditions are available for review. If for any reason these terms and conditions are not accepted, this report should be returned immediately to the sender.

Fill materials in the northern end of the site are contaminated with polynuclear aromatic hydrocarbons (PAHs) and lead in excess of the Connecticut Remediation Standard Regulations (RSRs).

Two historical fuel oil spills occurred at the site in the 1970s. One spill was reported to be between 500 gallons and 700 gallons of fuel oil. The other spill was approximately 1 quart of oil per day for 2 months. There is no documentation describing how either of the spills were addressed.

6 Mountain Avenue: The Phase I identified the location of a former 550-gallon fuel oil UST and noted that further investigation of this area was warranted.

The Phase II concluded that no release had occurred from the UST and no further investigation was warranted.

Neither site was identified as being subject to the Connecticut Property Transfer Act (Transfer Act).

Assessment Procedures

The scope of services for GeoQuest's subsurface investigation included a ground penetrating radar (GPR) survey and utility clearance, the advancement of soil borings throughout the site, the installation of groundwater monitoring wells on the down-gradient (west side) of the property, and the collection and laboratory analysis of soil and groundwater samples.

Utility Markout

Prior to initiating any fieldwork, the proposed boring locations were marked and Call Before You Dig (CBYD) was notified for utility clearance. A private utility mark-out service was also utilized to ensure all utilities and/or subsurface structures were properly marked throughout the site. Underground Surveying of Brookfield, Connecticut, conducted the private utility mark-out on December 15, 2022. No underground utilities were identified in the proposed soil boring locations.

Drilling Activities

On December 19, 2022, GeoQuest personnel met with Haz-Probe, Inc. (Haz-Probe) of Hampden, Massachusetts, to advance soil borings and install groundwater monitoring wells. The soil borings were advanced with a track-mounted Geoprobe-type drilling rig. Soil samples were collected as the borings were advanced using a four-foot stainless steel macro sampler and disposable acetate liners. The sampling equipment was decontaminated between samples using an Alconox wash. Thirteen soil borings (GQ-1 through GQ-13) were advanced, and four groundwater monitoring wells

(MW-1 through MW-4) were installed. The boring locations are identified on the figures included in Appendix A.

Soil Sampling Procedures

GeoQuest personnel were present during all fieldwork to complete boring logs, record field observations, and complete field screening using a portable photo-ionization detector (PID). The PID is only a screening tool for volatile organic compounds (VOCs), as it does not provide quantitative data for individual VOCs. Sample selections for laboratory analysis were based on field observations, field screening results, and anticipated release mechanisms.

All soil samples were collected into appropriately preserved sample containers, placed on ice, and transported to Complete Environmental Testing, Inc. (CET), a Connecticut accredited laboratory, under chain-of-custody procedures for analysis. Soil samples for VOC analysis were collected using US Environmental Protection Agency (EPA) 5035 sample preservation methods (as modified by the CTDEEP). Five soil samples were analyzed for extractable total petroleum hydrocarbons (ETPH) by the Connecticut ETPH method and VOCs by EPA method 8260C. All analyses were completed using the CTDEEP's Reasonable Confidence Protocols (RCP).

Groundwater Monitoring Well Installation and Sampling Procedures

Four groundwater monitoring wells were installed along the down-gradient (western) edge of the property. All four wells were installed at a depth of 12 feet below grade. The wells were constructed using 10 feet of 0.010-inch slotted 2-inch diameter PVC and 2 feet of solid PVC riser. Flush-mounted road boxes were installed to protect the wells.

Samples were collected from the monitoring wells using a low-flow peristaltic pump. Groundwater quality parameters were monitored using a Horiba Water Quality Meter prior to sampling. The samples were collected after levels of dissolved oxygen, temperature, salinity, pH, oxidation-reduction potential (ORP), and conductivity stabilized for three consecutive measurements at three-minute intervals. The samples were analyzed for ETPH by the CTETPH method and VOCs by EPA Method 8260.

Observations and Analytical Results

Boring logs are included in Appendix B. Laboratory results are summarized in Appendix C, and a copy of the laboratory report is enclosed in Appendix D.

Soil Observations

Thirteen borings (GQ-1 through GQ-13) were advanced along the northern and western sides of the building. Surficial soils in the western end of the site (GQ-1 through GQ-4) and in the vicinity

of the building (GQ-5 through GQ-8) consisted primarily of sand, silt, and gravel. Fill materials containing asphalt, brick, and concrete were present where the former building was located in the northern end of the site (GQ-9 and GQ-10). Lesser amounts of these fill materials were observed in GQ-11 and GQ-12. No fill materials were observed in GQ-13.

PID readings ranged from 0.0 ppm to 55.6 ppm. There was no obvious evidence of contamination observed in any of the borings, although in GQ-9 and GQ-10 there was a gray to black discoloration. The discoloration did not appear to be related to organic materials, and did not exhibit any petroleum odor.

Groundwater Observations

The depth to groundwater along the western end of the site ranged from 4 feet to 6 feet below grade. Since topography is higher in the eastern end of the site, the depth to groundwater was approximately 8 feet to 10 feet below grade. No sheens or odors were noted in any of the groundwater samples.

Laboratory Results

No ETPH or VOCs were detected in any of the soil samples that were analyzed.

ETPH was not detected in any of the samples from the groundwater monitoring wells. The only VOC detected was methyl-tertiary butyl ether (MTBE), which was a gasoline additive from the 1980s through early 2000s. MTBE was present in three of the four wells. The concentrations were well below the Groundwater Protection Criteria (GWPC), Surface Water Protection Criteria (SWPC), and Residential Volatilization Criteria (RES VC). The most likely source of the MTBE is the former gasoline station that was located at the northern abutting parcel.

Conclusions

Based on the scope of services conducted, GeoQuest has made the following conclusions:

1. Fill materials in the northern end of the site contain brick, concrete, and asphalt fragment. These materials are presumed to be related to the former building in this area of the site. There was some gray discoloration in the soil borings in this area (GQ-9 and GQ-10), but the laboratory analyses did not detect any petroleum contamination. Polycyclic Aromatic Hydrocarbon (PAH) and lead previously detected in the SLR Phase II samples are attributable to the asphalt fragments within the fill. From an environmental perspective, the fill material can be re-used on-site. Areas where the fill can be re-used would be beneath the building, parking lot, and sidewalks. However, based on the brick, concrete, and asphalt pieces, the fill may not meet engineering specifications for these uses. Re-use in landscaped areas is not recommended.

Phase II-III Subsurface Investigation
Prosser Library, Bloomfield, Connecticut
GeoQuest Project No. 4130
January 25, 2023
Page 5

Soil in the western end of the site consists of sand and gravel. Although this may also be fill, there were no non-soil materials such as brick, concrete, or asphalt, and no contaminants were detected. There is no restriction for re-use of this soil from an environmental perspective.

2. Groundwater contamination was identified in the monitoring wells, and the likely source is the former gasoline station that was located at the northern abutting parcel. The levels of contamination are sufficiently low that they do not present a potential vapor intrusion issue for the new building.

Based on an initial review of the permitting requirements and the concentrations of contaminants detected in the groundwater, discharges from de-watering activities can go directly to the municipal sewer system. A written de-watering plan and General Permit will be required.

If you have any questions, or if you need anything further from our office, please do not hesitate to contact me at (860) 243-1757 or aschott@geoquestinc.com.

Very truly yours
GEOQUEST, INC.

Andrew Schott
Senior Associate

Appendices A - Site Figures
 B - Boring Logs
 C - Data Summary Tables
 D - Laboratory Reports

Former Mobil Gasoline Station

Wash Brook

Edge of Parking Lot

MW-2
GQ-2
MW-1
GQ-1

Parking Lot

GQ-13
MW-4

GQ-12

GQ-11

GQ-10

GQ-9

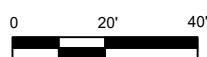
Parking Lot

GQ-6
GQ-7

GQ-8

PROSSER LIBRARY

Building Entrance


Landscaping

Landscaping

TUNXIS AVENUE

MOUNTAIN AVENUE

GEOQUEST, inc.

APPROXIMATE SCALE:
1"=40'

SAMPLE LOCATIONS
1 Tunxis Avenue, Bloomfield, Connecticut

DATE: 1/11/2023

GeoQuest Project No. 4130

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-1 Date: 12-19-2022
Field Classification & Remarks				
0-2' 2-4'	0-4'	35"	0-6" asphalt; 6-10" gravel and asphalt fragments; 10-20" reddish-brown coarse/fine sand and gravel with some rock fragments; 20-35" tan fine sand and silt Dry No Odor PID = 0.0	
4-6' 6-8'	4-8'	39"	0-4" tan fine sand and silt; 4-25" gray coarse/fine sand; 25-39" gray coarse sand Moist No Odor PID = 0.0	
	8-12'	48"	0-21" gray coarse sand; 21-48" reddish-brown fine sand and silt, trace Wet No Odor PID = 0.0	
<i>2" diameter well set at 12'; 10' screen, 2' riser</i>				

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-2 Date: 12-19-2022
Field Classification & Remarks				
0-2' 2-4'	0-4'	30"	0-8" asphalt; 8-12" gravel and asphalt fragments; 12-23" reddish-brown coarse/fine sand and gravel; 23-30" dark brown very fine sand and silt Dry No Odor PID = 0.0	
4-6' 6-8'	4-8'	44"	0-7" tan coarse/medium sand; 7-36" gray very fine sand and silt; 36-44" gray coarse/fine sand Moist No Odor PID = 0.0	
	8-12'	38"	0-20" gray coarse/fine sand; 20-38" gray silt and clay Wet No Odor PID = 0.0	
<i>2" diameter well set at 12'; 10' screen, 2' riser</i>				

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-3 Date: 12-19-2022
Field Classification & Remarks				
Sample	Depth	Recovery		
0-2' 2-4'	0-4'	36"	0-9" asphalt; 9-13" gravel and asphalt fragments; 13-28" reddish-tan very fine sand, silt, and gravel; 28-36" tan very fine sand, gravel, and rock fragments; red fibrous intrusion at 30" Dry No Odor PID = 55.6	
4-6' 6-8'	4-8'	37"	0-6" tan fine sand, gravel, and rock fragments; 6-34" gray very fine sand and silt; 34-37" gray coarse sand Moist No Odor PID = 1.3	
	8-12'	44"	0-34" gray coarse sand; 34-44" gray very fine sand and silt Wet No Odor PID = 0.0	
<i>2" diameter well set at 12'; 10' screen, 2' riser</i>				

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-4 Date: 12-19-2022
Field Classification & Remarks				
Sample	Depth	Recovery		
0-2' 2-4'	0-4'	34"	0-6" asphalt; 6-9" gravel and asphalt fragments; 9-26" reddish-brown very fine sand and silt; 26-34" dark brown silt Dry No Odor PID = 0.0	
4-6' 6-8'	4-8'	31"	0-8" brown fine sand; 8-12" tan very fine sand and silt; 12-24" brown coarse sand; 24-31" brown silt and clay Moist No Odor PID = 0.0	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-5 Date: 12-19-2022
Sample	Depth	Recovery	Field Classification & Remarks	
0-2' 2-4'	0-4'	38"	0-1" grass; 1-17" dark brown soil with plant material; 17-38" reddish-brown fine sand, silt, and gravel Dry No Odor PID = 1.0	
4-6' 6-8'	4-8'	42"	0-6" reddish-brown fine sand, silt, and gravel; 6-18" brown fine sand and silt; 18-33" brown coarse sand; 33-42" reddish-brown coarse sand and rock fragments Moist No Odor PID = 2.2	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-6 Date: 12-19-2022
Sample	Depth	Recovery	Field Classification & Remarks	
0-2' 2-4'	0-4'	36"	0-2" grass; 2-6" dark brown soil with plant material; 6-9" gravel; 9-14" asphalt fragments and gravel; 14-16" brown coarse sand and gravel; 16-20" gray coarse sand and rock fragments; 20-36" reddish-brown fine sand, silt, and gravel Dry No Odor PID = 0.5	
4-6' 6-8'	4-8'	36"	0-20" reddish-brown fine sand, silt, and gravel; 20-36" gray fine sand and silt Moist Slight Organic Odor PID = 1.6	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-7 Date: 12-19-2022
--	--	--	---	---

Sample	Depth	Recovery	Field Classification & Remarks
0-2' 2-4'	0-4'	31"	0-1" grass; 1-12" brown fine sand with trace pebbles; 12-23" brown fine sand and silt, some gravel and pebbles; 23-26" asphalt; 26-31" dark brown fine sand, silt, pebbles, and gravel Dry No Odor PID = 0.0
4-6' 6-8'	4-8'	38"	0-24" reddish-brown fine sand, silt, and gravel; 24-38" gray silt and clay Moist Organic Odor PID = 2.9

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-8 Date: 12-19-2022
--	--	--	---	---

Sample	Depth	Recovery	Field Classification & Remarks
0-2' 2-4'	0-4'	40"	0-1" grass; 1-24" brown fine sand and gravel with some pebbles; 24-28" asphalt; 28-40" brown very fine sand, silt, and gravel Dry No Odor PID = 0.5
4-6' 6-8'	4-8'	29"	0-29" reddish-brown fine sand, silt, and gravel Moist No Odor PID = 1.3

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-9 Date: 12-19-2022
Field Classification & Remarks				
Sample	Depth	Recovery		
0-2' 2-4'	0-4'	38"	0-7" asphalt; 7-34" coarse sand, gravel, asphalt fragments, and rock fragments; 34-38" brown coarse sand Dry No Odor PID = 0.0	
4-6' 6-8'	4-8'	31"	0-3" rock fragments; 3-14" coarse sand, gravel, and rock fragments; 14-15" black rock fragments; 15-22" brown fine sand and silt; 22-27" gray fine sand and silt; 27-31" brick Moist No Odor PID = 0.0	
	8-12'	34"	0-6" black very fine sand and silt; 6-30" gray very fine sand and silt; 30-34" Arkose rock fragments Moist No Odor PID = 0.4	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-10 Date: 12-19-2022
Field Classification & Remarks				
Sample	Depth	Recovery		
0-2' 2-4'	0-4'	32"	0-4" asphalt; 4-10" gravel and asphalt fragments; 10-32" reddish-brown coarse/fine sand, gravel, and rock fragments Dry No Odor PID = 0.4	
4-6' 6-8'	4-8'	36"	0-16" reddish-brown coarse/fine sand, gravel, and rock fragments; 16-22" brown very fine sand and silt; 22-26" asphalt; 26-36" gray very fine sand, silt, and clay Moist No Odor PID = 0.4	
	8-12'	21"	0-7" gray very fine sand, silt, and clay; 7-21" gray coarse sand Wet No Odor PID = 0.5	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-11 Date: 12-19-2022
Sample	Depth	Recovery	Field Classification & Remarks	
0-2' 2-4'	0-4'	38"	0-4" asphalt; 4-10" dark brown coarse sand, gravel, and asphalt fragments; 10-17" reddish-brown coarse/fine sand and gravel; 17-33" white concrete; 33-38" brown coarse sand with rock fragments and some pebbles Dry No Odor PID = 0.6	
4-6' 6-8'	4-8'	23"	0-20" brown coarse/fine sand; 20-23" brown fine sand and silt Moist No Odor PID = 0.6	
	8-12'	34"	0-8" brown fine sand and silt; 8-20" brown coarse sand; 20-34" gray very fine sand, silt, and clay Wet No Odor PID = 53.9	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-12 Date: 12-19-2022
Sample	Depth	Recovery	Field Classification & Remarks	
0-2' 2-4'	0-4'	37"	0-6" asphalt; 6-12" gravel and asphalt fragments; 12-37" reddish-brown coarse/fine sand with rock fragments and gravel Dry No Odor PID = 0.4	
4-6' 6-8'	4-8'	35"	0-11" reddish-brown coarse/fine sand with rock fragments and gravel; 11-25" gray very fine sand and silt; 25-35" gray coarse sand Moist No Odor PID = 0.5	

BORING / WELL LOG

Haz-Probe, Inc. 16 Stony Hill Road, Hampden, Massachusetts 01036 (413) 566-8662			Client: GeoQuest, Inc. Project: # 4130 Location: 1 Tunxis Avenue, Bloomfield, CT. Inspector: Andrew Schott	Boring No. : GQ-13 Date: 12-19-2022
Field Classification & Remarks				
0-2' 2-4'	0-4'	39"	0-5" asphalt; 5-10" gravel and asphalt fragments; 10-39" reddish-brown coarse/fine sand, gravel, and rock fragments Dry No Odor PID = 0.1	
4-6' 6-8'	4-8'	44"	0-8" reddish-brown coarse/fine sand, gravel, and rock fragments; 8-28" gray very fine sand and silt; 28-44" gray coarse sand Moist No Odor PID = 0.7	
	8-12'	42"	0-26" gray coarse sand; 26-42" brown very fine sand, silt, and clay Wet No Odor PID = 0.5	
<i>2" diameter well set at 12'; 10' screen, 2' riser</i>				

LABORATORY DATA - SOIL
1 Tunxis Avenue, Bloomfield, Connecticut
GeoQuest Project No. 4130

Parameter	RSR Criteria			Sample ID				
	RES DEC	I/C DEC	GA PMC	GQ-4	GQ-5	GQ-7	GQ-10	GQ-11
				6-8 ft.	6-8 ft.	6-8 ft.	6-8 ft.	8-12 ft.
				12/19/22	12/19/22	12/19/22	12/19/22	12/19/22
Extractable Total Petroleum Hydrocarbons (ETPH) mg/kg								
ETPH	500	2,500	500	ND	ND	ND	ND	ND
Volatile Organic Compounds (VOCs) mg/kg								
VOCs	Various	Various	Various	ND	ND	ND	ND	ND

Notes

Results in mg/kg (parts per million, ppm)

RES DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GA PMC - Pollutant Mobility Criteria for areas where groundwater is designated 'GA'

ETPH - Extractable Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

ND - Not Detected

LABORATORY DATA - GROUNDWATER
1 Tunxis Avenue, Bloomfield, Connecticut
GeoQuest Project No. 4130

Parameter	RSR Criteria			Sample ID			
	GWPC	SWPC	RES VC	MW-1	MW-2	MW-3	MW-4
				12/27/22	12/27/22	12/27/22	12/27/22
Extractable Total Petroleum Hydrocarbons (ETPH) ug/L							
ETPH	250	[250]	NE	ND	ND	ND	ND
Volatile Organic Compounds (VOCs) ug/L							
MTBE	100	[10,000]	50,000	50	5.3	ND	53

Results in ug/L (parts per billion, ppb)

Analytes not tabulated were not detected

Criteria in brackets [###] must be approved for site-specific use by CTDEEP as an "Additional Polluting Substance"

GWPC - Groundwater Protection Criteria

SWPC - Surface Water Protection Criteria

ETPH - Extractable Total Petroleum Hydrocarbons

VOCs - Volatile Organic Compounds

ND - Not Detected

80 Lupes Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
e-mail: cet1@cetlabs.com

Client: Mr. Andrew Schott
GeoQuest
2 Barnard Lane
Bloomfield, CT 06002

Analytical Report

CET# 2120650

Report Date: December 27, 2022
Project: 4130

Connecticut Laboratory Certificate: PH 0116
Massachusetts Laboratory Certificate: M-CT903
Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982
Pennsylvania Certificate: 68-02927

SAMPLE SUMMARY

The sample(s) were received at 4.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
GQ-4 6-8ft	2120650-01	Soil	12/19/2022 10:30	12/20/2022
GQ-5 6-8ft	2120650-02	Soil	12/19/2022 10:45	12/20/2022
GQ-7 6-8ft	2120650-03	Soil	12/19/2022 11:00	12/20/2022
GQ-10 6-8ft	2120650-04	Soil	12/19/2022 11:45	12/20/2022
GQ-11 8-12ft	2120650-05	Soil	12/19/2022 12:15	12/20/2022

Analyte: Percent Solids [SM 2540 G]

Analyst: MJC

Matrix: Soil

Laboratory ID	Client Sample ID	Result	RL	Units	Dilution	Batch	Prepared	Date/Time Analyzed	Notes
2120650-01	GQ-4 6-8ft	86	1.0	%	1	B2L2108	12/21/2022	12/22/2022 10:30	
2120650-02	GQ-5 6-8ft	76	1.0	%	1	B2L2108	12/21/2022	12/22/2022 10:30	
2120650-03	GQ-7 6-8ft	72	1.0	%	1	B2L2108	12/21/2022	12/22/2022 10:30	
2120650-04	GQ-10 6-8ft	75	1.0	%	1	B2L2108	12/21/2022	12/22/2022 10:30	
2120650-05	GQ-11 8-12ft	84	1.0	%	1	B2L2108	12/21/2022	12/22/2022 10:30	

Client Sample ID GQ-4 6-8ft**Lab ID: 2120650-01****Conn. Extractable TPH****Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	58	1	EPA 3550C	B2L2210	12/22/2022	12/23/2022 05:36	
Surrogate: Octacosane	101 %	50 - 150			B2L2210	12/22/2022	12/23/2022 05:36	

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1,1-Trichloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1,2,2-Tetrachloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1,2-Trichloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1-Dichloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1-Dichloroethene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,1-Dichloropropene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2,3-Trichlorobenzene	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2,3-Trichloropropane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2,4-Trichlorobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2,4-Trimethylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2-Dibromo-3-Chloropropane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2-Dibromoethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2-Dichlorobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2-Dichloroethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,2-Dichloropropene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,3,5-Trimethylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,3-Dichlorobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,3-Dichloropropane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
1,4-Dichlorobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
2,2-Dichloropropane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
2-Butanone (MEK)	ND	24	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*I
2-Chlorotoluene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
2-Hexanone	ND	24	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*I
4-Chlorotoluene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
4-Isopropyltoluene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Acetone	ND	140	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*I
Acrylonitrile	ND	7.7	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	

Complete Environmental Testing, Inc.

Client Sample ID GQ-4 6-8ft

Lab ID: 2120650-01

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Bromobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Bromochloromethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*C1
Bromodichloromethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Bromoform	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Bromomethane	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*F2*C2
Carbon Disulfide	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Carbon Tetrachloride	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Chlorobenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Chloroethane	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Chloroform	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Chloromethane	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
cis-1,2-Dichloroethene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
cis-1,3-Dichloropropene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Dibromochloromethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Dibromomethane	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Dichlorodifluoromethane	ND	14	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Ethylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Hexachlorobutadiene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Isopropylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
m+p Xylenes	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Methyl Isobutyl Ketone	ND	24	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Methylene Chloride	ND	58	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Naphthalene	ND	9.6	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
n-Butylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
n-Propylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
o-Xylene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
sec-Butylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Styrene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
tert-Butylbenzene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Tetrachloroethene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Tetrahydrofuran	ND	24	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*F1*I
Toluene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
trans-1,2-Dichloroethene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
trans-1,3-Dichloropropene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	

Complete Environmental Testing, Inc.

Client Sample ID GQ-4 6-8ft**Lab ID: 2120650-01****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	24	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*I
Trichloroethene	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Trichlorofluoromethane	ND	39	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Trichlorotrifluoroethane	ND	39	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	
Vinyl Chloride	ND	4.8	1.65	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:20	*F2*C2
<i>Surrogate: 1,2-Dichloroethane-d4</i>	<i>106 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:20</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	<i>102 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:20</i>	
<i>Surrogate: Toluene-d8</i>	<i>102 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:20</i>	

Client Sample ID GQ-5 6-8ft**Lab ID: 2120650-02****Conn. Extractable TPH****Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	65	1	EPA 3550C	B2L2210	12/22/2022	12/23/2022 05:58	
Surrogate: Octacosane	105 %	50 - 150			B2L2210	12/22/2022	12/23/2022 05:58	

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1,1-Trichloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1,2,2-Tetrachloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1,2-Trichloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1-Dichloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1-Dichloroethene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,1-Dichloropropene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2,3-Trichlorobenzene	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2,3-Trichloropropane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2,4-Trichlorobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2,4-Trimethylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2-Dibromo-3-Chloropropane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2-Dibromoethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2-Dichlorobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2-Dichloroethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,2-Dichloropropene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,3,5-Trimethylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,3-Dichlorobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,3-Dichloropropane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
1,4-Dichlorobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
2,2-Dichloropropane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
2-Butanone (MEK)	ND	29	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*I
2-Chlorotoluene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
2-Hexanone	ND	29	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*I
4-Chlorotoluene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
4-Isopropyltoluene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Acetone	ND	180	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Acrylonitrile	ND	9.4	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	

Complete Environmental Testing, Inc.

Client Sample ID GQ-5 6-8ft

Lab ID: 2120650-02

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Bromobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Bromochloromethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*C1
Bromodichloromethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Bromoform	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Bromomethane	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*F2*C2
Carbon Disulfide	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Carbon Tetrachloride	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Chlorobenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Chloroethane	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Chloroform	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Chloromethane	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
cis-1,2-Dichloroethene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
cis-1,3-Dichloropropene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Dibromochloromethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Dibromomethane	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Dichlorodifluoromethane	ND	18	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Ethylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Hexachlorobutadiene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Isopropylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
m+p Xylenes	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Methyl Isobutyl Ketone	ND	29	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Methylene Chloride	ND	71	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Naphthalene	ND	12	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
n-Butylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
n-Propylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
o-Xylene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
sec-Butylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Styrene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
tert-Butylbenzene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Tetrachloroethene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Tetrahydrofuran	ND	29	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*F1*I
Toluene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
trans-1,2-Dichloroethene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
trans-1,3-Dichloropropene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	

Complete Environmental Testing, Inc.

Client Sample ID GQ-5 6-8ft**Lab ID: 2120650-02****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	29	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*I
Trichloroethene	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Trichlorofluoromethane	ND	47	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Trichlorotrifluoroethane	ND	47	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	
Vinyl Chloride	ND	5.9	1.79	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 19:42	*F2*C2
<i>Surrogate: 1,2-Dichloroethane-d4</i>	99.6 %	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:42</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	105 %	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:42</i>	
<i>Surrogate: Toluene-d8</i>	101 %	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 19:42</i>	

Client Sample ID GQ-7 6-8ft**Lab ID: 2120650-03****Conn. Extractable TPH****Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	68	1	EPA 3550C	B2L2210	12/22/2022	12/23/2022 06:19	
Surrogate: Octacosane	104 %		50 - 150		B2L2210	12/22/2022	12/23/2022 06:19	

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1,1-Trichloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1,2,2-Tetrachloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1,2-Trichloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1-Dichloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1-Dichloroethene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,1-Dichloropropene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2,3-Trichlorobenzene	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2,3-Trichloropropane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2,4-Trichlorobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2,4-Trimethylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2-Dibromo-3-Chloropropane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2-Dibromoethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2-Dichlorobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2-Dichloroethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,2-Dichloropropene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,3,5-Trimethylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,3-Dichlorobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,3-Dichloropropane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
1,4-Dichlorobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
2,2-Dichloropropane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
2-Butanone (MEK)	ND	30	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*I
2-Chlorotoluene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
2-Hexanone	ND	30	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*I
4-Chlorotoluene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
4-Isopropyltoluene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Acetone	ND	180	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Acrylonitrile	ND	9.7	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	

Complete Environmental Testing, Inc.

Client Sample ID GQ-7 6-8ft

Lab ID: 2120650-03

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Bromobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Bromochloromethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*C1
Bromodichloromethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Bromoform	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Bromomethane	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*F2*C2
Carbon Disulfide	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Carbon Tetrachloride	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Chlorobenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Chloroethane	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Chloroform	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Chloromethane	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
cis-1,2-Dichloroethene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
cis-1,3-Dichloropropene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Dibromochloromethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Dibromomethane	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Dichlorodifluoromethane	ND	18	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Ethylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Hexachlorobutadiene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Isopropylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
m+p Xylenes	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Methyl Isobutyl Ketone	ND	30	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Methylene Chloride	ND	73	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Naphthalene	ND	12	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
n-Butylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
n-Propylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
o-Xylene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
sec-Butylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Styrene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
tert-Butylbenzene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Tetrachloroethene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Tetrahydrofuran	ND	30	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*F1*I
Toluene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
trans-1,2-Dichloroethene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
trans-1,3-Dichloropropene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	

Complete Environmental Testing, Inc.

Client Sample ID GQ-7 6-8ft**Lab ID: 2120650-03****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	30	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*I
Trichloroethene	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Trichlorofluoromethane	ND	48	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Trichlorotrifluoroethane	ND	48	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	
Vinyl Chloride	ND	6.1	1.75	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:03	*F2*C2
<i>Surrogate: 1,2-Dichloroethane-d4</i>	<i>108 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 20:03</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	<i>99.4 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 20:03</i>	
<i>Surrogate: Toluene-d8</i>	<i>125 %</i>	<i>70 - 130</i>			B2L2230	12/22/2022	<i>12/22/2022 20:03</i>	

Client Sample ID GQ-10 6-8ft**Lab ID: 2120650-04****Conn. Extractable TPH****Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	66	1	EPA 3550C	B2L2210	12/22/2022	12/23/2022 06:40	
Surrogate: Octacosane	101 %		50 - 150		B2L2210	12/22/2022	12/23/2022 06:40	

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1,1-Trichloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1,2,2-Tetrachloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1,2-Trichloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1-Dichloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1-Dichloroethene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,1-Dichloropropene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2,3-Trichlorobenzene	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2,3-Trichloropropane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2,4-Trichlorobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2,4-Trimethylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2-Dibromo-3-Chloropropane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2-Dibromoethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2-Dichlorobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2-Dichloroethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,2-Dichloropropene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,3,5-Trimethylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,3-Dichlorobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,3-Dichloropropane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
1,4-Dichlorobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
2,2-Dichloropropane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
2-Butanone (MEK)	ND	28	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*I
2-Chlorotoluene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
2-Hexanone	ND	28	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*I
4-Chlorotoluene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
4-Isopropyltoluene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Acetone	ND	170	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Acrylonitrile	ND	8.9	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	

Complete Environmental Testing, Inc.

Client Sample ID GQ-10 6-8ft**Lab ID: 2120650-04****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Bromobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Bromochloromethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*C1
Bromodichloromethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Bromoform	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Bromomethane	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*F2*C2
Carbon Disulfide	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Carbon Tetrachloride	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Chlorobenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Chloroethane	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Chloroform	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Chloromethane	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
cis-1,2-Dichloroethene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
cis-1,3-Dichloropropene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Dibromochloromethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Dibromomethane	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Dichlorodifluoromethane	ND	17	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Ethylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Hexachlorobutadiene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Isopropylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
m+p Xylenes	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Methyl Isobutyl Ketone	ND	28	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Methylene Chloride	ND	66	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Naphthalene	ND	11	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
n-Butylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
n-Propylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
o-Xylene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
sec-Butylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Styrene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
tert-Butylbenzene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Tetrachloroethene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Tetrahydrofuran	ND	28	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*F1*I
Toluene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
trans-1,2-Dichloroethene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
trans-1,3-Dichloropropene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	

Complete Environmental Testing, Inc.

Client Sample ID GQ-10 6-8ft**Lab ID: 2120650-04****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	28	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*I
Trichloroethene	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Trichlorofluoromethane	ND	44	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Trichlorotrifluoroethane	ND	44	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	
Vinyl Chloride	ND	5.5	1.66	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:25	*F2*C2
<i>Surrogate: 1,2-Dichloroethane-d4</i>	107 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:25</i>		
<i>Surrogate: 4-Bromofluorobenzene</i>	107 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:25</i>		
<i>Surrogate: Toluene-d8</i>	107 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:25</i>		

Client Sample ID GQ-11 8-12ft**Lab ID: 2120650-05****Conn. Extractable TPH****Analyst: PDS****Method: CT-ETPH****Matrix: Soil**

Analyte	Result (mg/kg dry)	RL (mg/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	59	1	EPA 3550C	B2L2210	12/22/2022	12/23/2022 07:02	
Surrogate: Octacosane	102 %	50 - 150			B2L2210	12/22/2022	12/23/2022 07:02	

Volatile Organics**Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1,1-Trichloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1,2,2-Tetrachloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1,2-Trichloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1-Dichloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1-Dichloroethene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,1-Dichloropropene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2,3-Trichlorobenzene	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2,3-Trichloropropane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2,4-Trichlorobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2,4-Trimethylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2-Dibromo-3-Chloropropane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2-Dibromoethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2-Dichlorobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2-Dichloroethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,2-Dichloropropene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,3,5-Trimethylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,3-Dichlorobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,3-Dichloropropane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
1,4-Dichlorobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
2,2-Dichloropropane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
2-Butanone (MEK)	ND	20	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*I
2-Chlorotoluene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
2-Hexanone	ND	20	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*I
4-Chlorotoluene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
4-Isopropyltoluene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Acetone	ND	120	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Acrylonitrile	ND	6.4	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	

Complete Environmental Testing, Inc.

Client Sample ID GQ-11 8-12ft

Lab ID: 2120650-05

Volatile Organics

Analyst: RAN

Method: EPA 8260C

Matrix: Soil

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Bromobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Bromochloromethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*C1
Bromodichloromethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Bromoform	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Bromomethane	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*F2*C2
Carbon Disulfide	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Carbon Tetrachloride	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Chlorobenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Chloroethane	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Chloroform	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Chloromethane	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
cis-1,2-Dichloroethene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
cis-1,3-Dichloropropene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Dibromochloromethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Dibromomethane	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Dichlorodifluoromethane	ND	12	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Ethylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Hexachlorobutadiene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Isopropylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
m+p Xylenes	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Methyl Isobutyl Ketone	ND	20	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Methylene Chloride	ND	48	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*F2*C2
Methyl-t-Butyl Ether (MTBE)	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Naphthalene	ND	8.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
n-Butylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
n-Propylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
o-Xylene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
sec-Butylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Styrene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
tert-Butylbenzene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Tetrachloroethene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Tetrahydrofuran	ND	20	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*F1*I
Toluene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
trans-1,2-Dichloroethene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
trans-1,3-Dichloropropene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	

Complete Environmental Testing, Inc.

Client Sample ID GQ-11 8-12ft**Lab ID: 2120650-05****Volatile Organics****Analyst: RAN****Method: EPA 8260C****Matrix: Soil**

Analyte	Result (ug/kg dry)	RL (ug/kg dry)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	20	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*I
Trichloroethene	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Trichlorofluoromethane	ND	32	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Trichlorotrifluoroethane	ND	32	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	
Vinyl Chloride	ND	4.0	1.34	EPA 5035A-L	B2L2230	12/22/2022	12/22/2022 20:46	*F2*C2
<i>Surrogate: 1,2-Dichloroethane-d4</i>	107 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:46</i>		
<i>Surrogate: 4-Bromofluorobenzene</i>	117 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:46</i>		
<i>Surrogate: Toluene-d8</i>	110 %	<i>70 - 130</i>		B2L2230	12/22/2022	<i>12/22/2022 20:46</i>		

QUALITY CONTROL SECTION

Batch B2L2108 - SM 2540 G

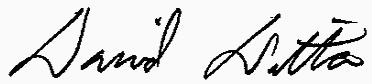
Analyte	Result (%)	RL (%)	Spike Level	Source Result	% Rec % Rec	% Rec Limits	RPD RPD	RPD Limit	Notes
Duplicate (B2L2108-DUP1)									
Percent Solids	85	1.0		84			0.971	5	

Batch B2L2210 - CT-ETPH

Analyte	Result (mg/kg)	RL (mg/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes			
Blank (B2L2210-BLK1)					Prepared: 12/22/22 Analyzed: 12/23/22							
ETPH	ND	50										
<i>Surrogate: Octacosane</i>					110	50 - 150						
LCS (B2L2210-BS1)					Prepared: 12/22/22 Analyzed: 12/23/22							
ETPH	1540	50		1,500.000	103	60 - 120						
<i>Surrogate: Octacosane</i>					105	50 - 150						

Batch B2L2230 - EPA 8260C

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2L2230-BLK1)									Prepared: 12/22/22 Analyzed: 12/22/22
Dichlorodifluoromethane	ND	7.5							
Chloromethane	ND	5.0							
Vinyl Chloride	ND	2.5							
Bromomethane	ND	5.0							
Chloroethane	ND	5.0							
Trichlorofluoromethane	ND	20							
Acetone	ND	75							
Acrylonitrile	ND	4.0							
Trichlorotrifluoroethane	ND	20							
1,1-Dichloroethene	ND	2.5							
Methylene Chloride	ND	30							
Carbon Disulfide	ND	5.0							
Methyl-t-Butyl Ether (MTBE)	ND	2.5							
trans-1,2-Dichloroethene	ND	2.5							
1,1-Dichloroethane	ND	2.5							
2-Butanone (MEK)	ND	13							
2,2-Dichloropropane	ND	2.5							
cis-1,2-Dichloroethene	ND	2.5							
Bromochloromethane	ND	2.5							
Chloroform	ND	2.5							
Tetrahydrofuran	ND	13							
1,1,1-Trichloroethane	ND	2.5							
Carbon Tetrachloride	ND	2.5							
1,1-Dichloropropene	ND	2.5							
Benzene	ND	2.5							
1,2-Dichloroethane	ND	2.5							
Trichloroethene	ND	2.5							
1,2-Dichloropropane	ND	2.5							
Dibromomethane	ND	2.5							
Bromodichloromethane	ND	2.5							
Methyl Isobutyl Ketone	ND	13							
cis-1,3-Dichloropropene	ND	2.5							
Toluene	ND	2.5							
trans-1,3-Dichloropropene	ND	2.5							
2-Hexanone	ND	13							
1,1,2-Trichloroethane	ND	2.5							
Tetrachloroethene	ND	2.5							
1,3-Dichloropropane	ND	2.5							
Dibromochloromethane	ND	2.5							
1,2-Dibromoethane	ND	2.5							
trans-1,4-Dichloro-2-Butene	ND	13							
Chlorobenzene	ND	2.5							
1,1,1,2-Tetrachloroethane	ND	2.5							
Ethylbenzene	ND	2.5							
m+p Xylenes	ND	5.0							
o-Xylene	ND	2.5							
Styrene	ND	2.5							
Bromoform	ND	2.5							
Isopropylbenzene	ND	2.5							
1,1,2,2-Tetrachloroethane	ND	2.5							
Bromobenzene	ND	2.5							


Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
Blank (B2L2230-BLK1) - Continued									Prepared: 12/22/22 Analyzed: 12/22/22
1,2,3-Trichloropropane	ND	2.5							
n-Propylbenzene	ND	2.5							
2-Chlorotoluene	ND	2.5							
4-Chlorotoluene	ND	2.5							
1,3,5-Trimethylbenzene	ND	2.5							
tert-Butylbenzene	ND	2.5							
1,2,4-Trimethylbenzene	ND	2.5							
sec-Butylbenzene	ND	2.5							
1,3-Dichlorobenzene	ND	2.5							
4-Isopropyltoluene	ND	2.5							
1,4-Dichlorobenzene	ND	2.5							
1,2-Dichlorobenzene	ND	2.5							
n-Butylbenzene	ND	2.5							
1,2-Dibromo-3-Chloropropane	ND	2.5							
1,2,4-Trichlorobenzene	ND	2.5							
Hexachlorobutadiene	ND	2.5							
Naphthalene	ND	5.0							
1,2,3-Trichlorobenzene	ND	5.0							
<i>Surrogate: 1,2-Dichloroethane-d4</i>					94.0	70 - 130			
<i>Surrogate: Toluene-d8</i>					101	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					118	70 - 130			
LCS (B2L2230-BS1)									Prepared: 12/22/22 Analyzed: 12/22/22
Dichlorodifluoromethane	50.8	7.5	50.000		102	70 - 130			
Chloromethane	42.8	5.0	50.000		85.6	70 - 130			
Vinyl Chloride	68.8	2.5	50.000		138	70 - 130			H
Bromomethane	78.7	5.0	50.000		157	70 - 130			H
Chloroethane	43.2	5.0	50.000		86.3	70 - 130			
Trichlorofluoromethane	46.7	20	50.000		93.4	70 - 130			
Acetone	112	75	100.000		112	70 - 130			
Acrylonitrile	39.8	4.0	50.000		79.6	70 - 130			
Trichlorotrifluoroethane	50.4	20	50.000		101	70 - 130			
1,1-Dichloroethene	47.2	2.5	50.000		94.3	70 - 130			
Methylene Chloride	66.3	30	50.000		133	70 - 130			H
Carbon Disulfide	39.3	5.0	50.000		78.5	70 - 130			
Methyl-t-Butyl Ether (MTBE)	36.5	2.5	50.000		73.0	70 - 130			
trans-1,2-Dichloroethene	41.3	2.5	50.000		82.5	70 - 130			
1,1-Dichloroethane	41.8	2.5	50.000		83.6	70 - 130			
2-Butanone (MEK)	93.1	13	100.000		93.1	70 - 130			
2,2-Dichloropropane	46.6	2.5	50.000		93.2	70 - 130			
cis-1,2-Dichloroethene	41.3	2.5	50.000		82.5	70 - 130			
Bromochloromethane	39.1	2.5	50.000		78.3	70 - 130			
Chloroform	42.3	2.5	50.000		84.5	70 - 130			
Tetrahydrofuran	34.8	13	50.000		69.5	70 - 130			L
1,1,1-Trichloroethane	44.4	2.5	50.000		88.8	70 - 130			
Carbon Tetrachloride	46.2	2.5	50.000		92.5	70 - 130			
1,1-Dichloropropene	46.1	2.5	50.000		92.3	70 - 130			
Benzene	43.7	2.5	50.000		87.4	70 - 130			
1,2-Dichloroethane	41.9	2.5	50.000		83.7	70 - 130			
Trichloroethene	48.6	2.5	50.000		97.1	70 - 130			
1,2-Dichloropropane	41.5	2.5	50.000		83.0	70 - 130			
Dibromomethane	47.6	2.5	50.000		95.2	70 - 130			
Bromodichloromethane	42.6	2.5	50.000		85.2	70 - 130			

Analyte	Result (ug/kg)	RL (ug/kg)	Spike Level	Source Result	% Rec	% Rec Limits	RPD	RPD Limit	Notes
LCS (B2L2230-BS1) - Continued									Prepared: 12/22/22 Analyzed: 12/22/22
Methyl Isobutyl Ketone	83.6	13	100.000		83.6	70 - 130			
cis-1,3-Dichloropropene	45.3	2.5	50.000		90.6	70 - 130			
Toluene	45.6	2.5	50.000		91.2	70 - 130			
trans-1,3-Dichloropropene	45.9	2.5	50.000		91.7	70 - 130			
2-Hexanone	91.9	13	100.000		91.9	70 - 130			
1,1,2-Trichloroethane	45.4	2.5	50.000		90.8	70 - 130			
Tetrachloroethene	51.1	2.5	50.000		102	70 - 130			
1,3-Dichloropropane	42.7	2.5	50.000		85.5	70 - 130			
Dibromochloromethane	42.1	2.5	50.000		84.2	70 - 130			
1,2-Dibromoethane	41.1	2.5	50.000		82.2	70 - 130			
trans-1,4-Dichloro-2-Butene	41.5	13	50.000		83.1	70 - 130			
Chlorobenzene	49.4	2.5	50.000		98.7	70 - 130			
1,1,1,2-Tetrachloroethane	45.2	2.5	50.000		90.4	70 - 130			
Ethylbenzene	44.1	2.5	50.000		88.2	70 - 130			
m+p Xylenes	100	5.0	100.000		100	70 - 130			
o-Xylene	45.3	2.5	50.000		90.5	70 - 130			
Styrene	45.4	2.5	50.000		90.8	70 - 130			
Bromoform	46.8	2.5	50.000		93.6	70 - 130			
Isopropylbenzene	48.8	2.5	50.000		97.6	70 - 130			
1,1,2,2-Tetrachloroethane	40.1	2.5	50.000		80.3	70 - 130			
Bromobenzene	40.5	2.5	50.000		81.0	70 - 130			
1,2,3-Trichloropropane	41.6	2.5	50.000		83.1	70 - 130			
n-Propylbenzene	46.5	2.5	50.000		93.0	70 - 130			
2-Chlorotoluene	44.4	2.5	50.000		88.9	70 - 130			
4-Chlorotoluene	41.5	2.5	50.000		83.0	70 - 130			
1,3,5-Trimethylbenzene	46.3	2.5	50.000		92.6	70 - 130			
tert-Butylbenzene	47.6	2.5	50.000		95.2	70 - 130			
1,2,4-Trimethylbenzene	44.1	2.5	50.000		88.2	70 - 130			
sec-Butylbenzene	48.3	2.5	50.000		96.5	70 - 130			
1,3-Dichlorobenzene	46.4	2.5	50.000		92.7	70 - 130			
4-Isopropyltoluene	47.4	2.5	50.000		94.8	70 - 130			
1,4-Dichlorobenzene	48.1	2.5	50.000		96.2	70 - 130			
1,2-Dichlorobenzene	45.6	2.5	50.000		91.1	70 - 130			
n-Butylbenzene	46.6	2.5	50.000		93.2	70 - 130			
1,2-Dibromo-3-Chloropropane	43.6	2.5	50.000		87.1	70 - 130			
1,2,4-Trichlorobenzene	46.2	2.5	50.000		92.4	70 - 130			
Hexachlorobutadiene	47.7	2.5	50.000		95.4	70 - 130			
Naphthalene	40.9	5.0	50.000		81.9	70 - 130			
1,2,3-Trichlorobenzene	43.6	5.0	50.000		87.1	70 - 130			
<i>Surrogate: 1,2-Dichloroethane-d4</i>					92.1	70 - 130			
<i>Surrogate: Toluene-d8</i>					99.0	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					108	70 - 130			

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

This technical report was reviewed by Robert Blake

David Ditta
Laboratory Director

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

Reporting Limit (RL) is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

80 Luples Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention time, calculate relative response, and quantify analytes of interest.
Surrogate Recovery	The % recovery for non-target organic compounds that are spiked into all samples. Used to determine method performance.
Continuing Calibration Batch	An analytical standard analyzed with each set of samples to verify initial calibration of the system. Samples that are analyzed together with the same method, sequence and lot of reagents within the same time period.
ND	Not detected at or above the specified reporting limit.
RL	Reporting Limit
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high concentration of target compounds.
Duplicate Result	Result from the duplicate analysis of a sample.
Spike Level	Amount of analyte found in a sample.
Matrix Spike Result	Amount of analyte added to a sample
Matrix Spike Dup	Amount of analyte found including amount that was spiked.
Matrix Spike % Recovery	Amount of analyte found in duplicate spikes including amount that was spike.
Matrix Spike Dup % Recovery	% Recovery of spiked amount in sample.
RPD	% Recovery of spiked duplicate amount in sample.
Blank	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
LCS % Recovery	Method Blank that has been taken through all steps of the analysis.
Recovery Limits	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
CC	A range within which specified measurements results must fall to be compliant.
	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116
Massachusetts Laboratory Certification M-CT903
Pennsylvania NELAP Accreditation 68-02927

New York NELAP Accreditation 11982
Rhode Island Certification 199

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Client: GeoQuest

Project Location: 4130

Project Number:

Laboratory Sample ID(s):

2120650-01 thru 2120650-05

Sample Date(s):

12/19/2022

List RCP Methods Used:

CT-ETPH, EPA 8260C

CET #: 2120650

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1A	Were the method specified preservation and holding time requirements met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
5b	b) Were these reporting limits met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Position: Laboratory Director

Printed Name: David Ditta

Date: 12/27/2022

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

RCP Case Narrative

4- See Exceptions Report Below

7- Project specific QC was not requested by the client.

4- Exceptions Report

Analyte	QC Type	Exception	Result	RPD	Recovery (%)	Batch/Sequence
Bromomethane	LCS	High	78.7		157	B2L2230
Methylene Chloride	LCS	High	66.3		133	B2L2230
Tetrahydrofuran	LCS	Low	34.8		69.5	B2L2230
Vinyl Chloride	LCS	High	68.8		138	B2L2230
Bromochloromethane	CC	Low	38.4		76.8	S2L2301
Bromomethane	CC	High	82.8		166	S2L2301
Methylene Chloride	CC	High	65.3		131	S2L2301
Vinyl Chloride	CC	High	71.8		144	S2L2301
2-Butanone (MEK)	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				
2-Hexanone	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				
Acetone	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				
Tetrahydrofuran	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				
trans-1,4-Dichloro-2-Butene	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
B2L2210		2120650-01	GQ-4 6-8ft	CT-ETPH	Soil	12/19/2022
B2L2210		2120650-02	GQ-5 6-8ft	CT-ETPH	Soil	12/19/2022
B2L2210		2120650-03	GQ-7 6-8ft	CT-ETPH	Soil	12/19/2022
B2L2210		2120650-04	GQ-10 6-8ft	CT-ETPH	Soil	12/19/2022
B2L2210		2120650-05	GQ-11 8-12ft	CT-ETPH	Soil	12/19/2022
B2L2230	S2L2301	2120650-01	GQ-4 6-8ft	EPA 8260C	Soil	12/19/2022
B2L2230	S2L2301	2120650-02	GQ-5 6-8ft	EPA 8260C	Soil	12/19/2022
B2L2230	S2L2301	2120650-03	GQ-7 6-8ft	EPA 8260C	Soil	12/19/2022
B2L2230	S2L2301	2120650-04	GQ-10 6-8ft	EPA 8260C	Soil	12/19/2022
B2L2230	S2L2301	2120650-05	GQ-11 8-12ft	EPA 8260C	Soil	12/19/2022

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
<i>CT-ETPH in Soil</i>	
ETPH	CT
<i>EPA 8260C in Soil</i>	
Dichlorodifluoromethane	CT,NY,PA
Chloromethane	CT,NY,PA
Vinyl Chloride	CT,NY,PA
Bromomethane	CT,NY,PA
Chloroethane	CT,NY,PA
Trichlorofluoromethane	CT,NY,PA
Acetone	CT,NY,PA
Acrylonitrile	CT
Trichlorotrifluoroethane	CT,NY,PA
1,1-Dichloroethene	CT,NY,PA
Methylene Chloride	CT,NY,PA
Carbon Disulfide	CT,NY,PA
Methyl-t-Butyl Ether (MTBE)	CT,NY,PA
trans-1,2-Dichloroethene	CT,NY,PA
1,1-Dichloroethane	CT,NY,PA
2-Butanone (MEK)	CT,NY,PA
2,2-Dichloropropane	CT,NY,PA
cis-1,2-Dichloroethene	CT,NY,PA
Bromochloromethane	CT,NY,PA
Chloroform	CT,NY,PA
Tetrahydrofuran	CT
1,1,1-Trichloroethane	CT,NY,PA
Carbon Tetrachloride	CT,NY,PA
1,1-Dichloropropene	CT,NY,PA
Benzene	CT,NY,PA
1,2-Dichloroethane	CT,NY,PA
Trichloroethene	CT,NY,PA
1,2-Dichloropropane	CT,NY,PA
Dibromomethane	CT,NY,PA
Bromodichloromethane	CT,NY,PA
Methyl Isobutyl Ketone	CT,NY,PA
cis-1,3-Dichloropropene	CT,NY,PA
Toluene	CT,NY,PA
trans-1,3-Dichloropropene	CT,NY,PA
2-Hexanone	CT,NY,PA
1,1,2-Trichloroethane	CT,NY,PA
Tetrachloroethene	CT,NY,PA
1,3-Dichloropropane	CT,NY,PA
Dibromochloromethane	CT,NY,PA
1,2-Dibromoethane	CT,NY,PA
trans-1,4-Dichloro-2-Butene	CT,NY,PA
Chlorobenzene	CT,NY,PA
1,1,1,2-Tetrachloroethane	CT,NY,PA
Ethylbenzene	CT,NY,PA

CERTIFICATIONS**Certified Analyses included in this Report**

Analyte	Certifications
EPA 8260C in Soil	
m+p Xylenes	CT, NY, PA
o-Xylene	CT, NY, PA
Styrene	CT, NY, PA
Bromoform	CT, NY, PA
Isopropylbenzene	CT, NY, PA
1,1,2,2-Tetrachloroethane	CT, NY, PA
Bromobenzene	CT, NY, PA
1,2,3-Trichloropropane	CT, NY, PA
n-Propylbenzene	CT, NY, PA
2-Chlorotoluene	CT, NY, PA
4-Chlorotoluene	CT, NY, PA
1,3,5-Trimethylbenzene	CT, NY, PA
tert-Butylbenzene	CT, NY, PA
1,2,4-Trimethylbenzene	CT, NY, PA
sec-Butylbenzene	CT, NY, PA
1,3-Dichlorobenzene	CT, NY, PA
4-Isopropyltoluene	CT, NY, PA
1,4-Dichlorobenzene	CT, NY, PA
1,2-Dichlorobenzene	CT, NY, PA
n-Butylbenzene	CT, NY, PA
1,2-Dibromo-3-Chloropropane	CT, NY, PA
1,2,4-Trichlorobenzene	CT, NY, PA
Hexachlorobutadiene	CT, NY
Naphthalene	CT, NY, PA
1,2,3-Trichlorobenzene	CT
SM 2540 G in Soil	
Percent Solids	CT

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2024
NY	New York Certification (NELAC)	11982	04/01/2023
PA	Pennsylvania DEP	68-02927	05/31/2023

2120650

COMPLETE ENVIRONMENTAL TESTING, INC.

CHAIN OF CUSTODY

Volatile Soils Only:

Date and Time in Freezer

Client: 12/19/22 e 14:00
CET: 12-20-22 17:3080 Luples Drive
Stratford, CT 06615Tel: (203) 377-9984
Fax: (203) 377-9952
e-mail: cetservices@cettlabs.com
e-mail: bottleorders@cettlabs.comSample ID/Sample Depths
(include Units for any sample depths provided)Collection
Date/Time

Matrix

A-Air

S=Soil

W=Water

D=Drinking

Water

C-Cassette

Solid

Wipe

Other

(Specify)

Same Day *

Next Day *

Two Day *

Three Day *

Std (5-7 Days)

8260 CT List

8260 Aromatics

8260 Halogens

CT ETPH

8270 CT List

8270 PNAs

PCBs

□ SOX

□ ASE

Pesticides

8 RCRA

13 Priority Poll

15 CT DEP

Total

SPLP

TCLP

Dissolved

Field Filtered

Lab to Filter

Metals

Additional Analysis

80 Lupes Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
e-mail: cet1@cetlabs.com

Client: Mr. Andrew Schott
GeoQuest
2 Barnard Lane
Bloomfield, CT 06002

Analytical Report

CET# 2120793

Report Date: January 05, 2023
Project: 4130

Connecticut Laboratory Certificate: PH 0116
Massachusetts Laboratory Certificate: M-CT903
Rhode Island Laboratory Certificate: 199

New York NELAP Accreditation: 11982
Pennsylvania Certificate: 68-02927

SAMPLE SUMMARY

The sample(s) were received at 4.0°C.

This report contains analytical data associated with following samples only.

Sample ID	Laboratory ID	Matrix	Collection Date/Time	Receipt Date
MW-1	2120793-01	Water	12/27/2022 10:12	12/28/2022
MW-2	2120793-02	Water	12/27/2022 10:42	12/28/2022
MW-3	2120793-03	Water	12/27/2022 11:12	12/28/2022
MW-4	2120793-04	Water	12/27/2022 11:56	12/28/2022

Client Sample ID MW-1

Lab ID: 2120793-01

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Water

Analyte	Result (mg/L)	RL (mg/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	0.10	1	EPA 3510C	B2L2901	12/29/2022	12/29/2022 18:25	
Surrogate: Octacosane	94.0 %		50 - 150		B2L2901	12/29/2022	12/29/2022 18:25	

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1,2-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,3-Dichloropropane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
2,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
2-Hexanone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*F1*C1*I
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Acetone	ND	50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
Acrylonitrile	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	

Complete Environmental Testing, Inc.

Client Sample ID MW-1

Lab ID: 2120793-01

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Bromobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Bromochloromethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Bromoform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Bromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Chlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Chloroethane	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Chloroform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Chloromethane	ND	2.7	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
cis-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Dibromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
Ethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
m+p Xylenes	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
Methylene Chloride	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Methyl-t-Butyl Ether (MTBE)	50	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Naphthalene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
o-Xylene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Styrene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Tetrahydrofuran	ND	4.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
Toluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
trans-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	

Complete Environmental Testing, Inc.

80 Luples Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 4 of 25

Client Sample ID MW-1**Lab ID: 2120793-01****Volatile Organics****Analyst: TWF****Method: EPA 8260C****Matrix: Water**

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	*C2
Trichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 13:46	
<i>Surrogate: 1,2-Dichloroethane-d4</i>	98.8 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 13:46</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	98.0 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 13:46</i>	
<i>Surrogate: Toluene-d8</i>	102 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 13:46</i>	

Client Sample ID MW-2

Lab ID: 2120793-02

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Water

Analyte	Result (mg/L)	RL (mg/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	0.10	1	EPA 3510C	B2L2901	12/29/2022	12/29/2022 18:46	
Surrogate: Octacosane	110 %		50 - 150		B2L2901	12/29/2022	12/29/2022 18:46	

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1,2-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,3-Dichloropropane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
2,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
2-Hexanone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*F1*C1*I
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Acetone	ND	50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
Acrylonitrile	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	

Complete Environmental Testing, Inc.

Client Sample ID MW-2

Lab ID: 2120793-02

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Bromobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Bromochloromethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Bromoform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Bromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Chlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Chloroethane	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Chloroform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Chloromethane	ND	2.7	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
cis-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Dibromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
Ethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
m+p Xylenes	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
Methylene Chloride	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Methyl-t-Butyl Ether (MTBE)	5.3	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Naphthalene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
o-Xylene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Styrene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Tetrahydrofuran	ND	4.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
Toluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
trans-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	

Complete Environmental Testing, Inc.

80 Luples Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 7 of 25

Client Sample ID MW-2**Lab ID: 2120793-02****Volatile Organics****Analyst: TWF****Method: EPA 8260C****Matrix: Water**

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	*C2
Trichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:10	
<i>Surrogate: 1,2-Dichloroethane-d4</i>	94.5 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:10</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	98.9 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:10</i>	
<i>Surrogate: Toluene-d8</i>	102 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:10</i>	

Client Sample ID MW-3

Lab ID: 2120793-03

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Water

Analyte	Result (mg/L)	RL (mg/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	0.10	1	EPA 3510C	B2L2901	12/29/2022	12/29/2022 19:07	
Surrogate: Octacosane	111 %		50 - 150		B2L2901	12/29/2022	12/29/2022 19:07	

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1,2-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,3-Dichloropropane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
2,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
2-Hexanone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*F1*C1*I
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Acetone	ND	50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
Acrylonitrile	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	

Complete Environmental Testing, Inc.

Client Sample ID MW-3

Lab ID: 2120793-03

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Bromobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Bromochloromethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Bromoform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Bromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Chlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Chloroethane	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Chloroform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Chloromethane	ND	2.7	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
cis-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Dibromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
Ethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
m+p Xylenes	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
Methylene Chloride	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Methyl-t-Butyl Ether (MTBE)	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Naphthalene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
o-Xylene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Styrene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Tetrahydrofuran	ND	4.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
Toluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
trans-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	

Complete Environmental Testing, Inc.

Client Sample ID MW-3**Lab ID: 2120793-03****Volatile Organics****Analyst: TWF****Method: EPA 8260C****Matrix: Water**

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	*C2
Trichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:34	
<i>Surrogate: 1,2-Dichloroethane-d4</i>	<i>98.1 %</i>	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:34</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	<i>97.7 %</i>	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:34</i>	
<i>Surrogate: Toluene-d8</i>	<i>102 %</i>	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:34</i>	

Client Sample ID MW-4

Lab ID: 2120793-04

Conn. Extractable TPH

Analyst: PDS

Method: CT-ETPH

Matrix: Water

Analyte	Result (mg/L)	RL (mg/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
ETPH	ND	0.10	1	EPA 3510C	B2L2901	12/29/2022	12/29/2022 19:28	
Surrogate: Octacosane	102 %		50 - 150		B2L2901	12/29/2022	12/29/2022 19:28	

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
1,1,1,2-Tetrachloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1,1-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1,2,2-Tetrachloroethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1,2-Trichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,1-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2,3-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2,3-Trichloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2,4-Trichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2,4-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2-Dibromo-3-Chloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2-Dibromoethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2-Dichloroethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,2-Dichloropropene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,3,5-Trimethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,3-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,3-Dichloropropane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
1,4-Dichlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
2,2-Dichloropropane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
2-Butanone (MEK)	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
2-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
2-Hexanone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*F1*C1*I
4-Chlorotoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
4-Isopropyltoluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Acetone	ND	50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
Acrylonitrile	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	

Complete Environmental Testing, Inc.

Client Sample ID MW-4

Lab ID: 2120793-04

Volatile Organics

Analyst: TWF

Method: EPA 8260C

Matrix: Water

Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
Benzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Bromobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Bromochloromethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Bromodichloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Bromoform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Bromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Carbon Disulfide	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Carbon Tetrachloride	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Chlorobenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Chloroethane	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Chloroform	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Chloromethane	ND	2.7	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
cis-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
cis-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Dibromochloromethane	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Dibromomethane	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Dichlorodifluoromethane	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
Ethylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Hexachlorobutadiene	ND	0.45	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Isopropylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
m+p Xylenes	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Methyl Isobutyl Ketone	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
Methylene Chloride	ND	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Methyl-t-Butyl Ether (MTBE)	53	5.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Naphthalene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
n-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
n-Propylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
o-Xylene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
sec-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Styrene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
tert-Butylbenzene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Tetrachloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Tetrahydrofuran	ND	4.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
Toluene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
trans-1,2-Dichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
trans-1,3-Dichloropropene	ND	0.50	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	

Complete Environmental Testing, Inc.

80 Luples Drive, Stratford, CT 06615 • Tel: 203-377-9984 • Fax: 203-377-9952 • www.cetlabs.com

Page 13 of 25

Client Sample ID MW-4**Lab ID: 2120793-04****Volatile Organics****Analyst: TWF****Method: EPA 8260C****Matrix: Water**

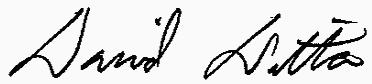
Analyte	Result (ug/L)	RL (ug/L)	Dilution	Prep Method	Batch	Prepared	Date/Time Analyzed	Notes
trans-1,4-Dichloro-2-Butene	ND	10	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	*C2
Trichloroethene	ND	1.0	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Trichlorofluoromethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Trichlorotrifluoroethane	ND	25	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
Vinyl Chloride	ND	1.6	1	EPA 5030C	B3A0430	01/04/2023	01/04/2023 14:58	
<i>Surrogate: 1,2-Dichloroethane-d4</i>	95.9 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:58</i>	
<i>Surrogate: 4-Bromofluorobenzene</i>	97.4 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:58</i>	
<i>Surrogate: Toluene-d8</i>	101 %	<i>70 - 130</i>			B3A0430	01/04/2023	<i>01/04/2023 14:58</i>	

QUALITY CONTROL SECTION

Batch B2L2901 - CT-ETPH

Analyte	Result (mg/L)	RL (mg/L)	Spike Level	Source Result	% Rec % Rec	% Rec Limits	RPD RPD	RPD Limit	Notes			
Blank (B2L2901-BLK1)					Prepared: 12/29/2022 Analyzed: 12/29/2022							
ETPH	ND	0.10										
<i>Surrogate: Octacosane</i>					106	50 - 150						
LCS (B2L2901-BS1)					Prepared: 12/29/2022 Analyzed: 12/29/2022							
ETPH	0.448	0.10	0.500		89.6	60 - 120						
<i>Surrogate: Octacosane</i>					126	50 - 150						
LCS Dup (B2L2901-BSD1)					Prepared: 12/29/2022 Analyzed: 12/29/2022							
ETPH	0.454	0.10	0.500		90.8	60 - 120	1.31	30				
<i>Surrogate: Octacosane</i>					106	50 - 150						

Batch B3A0430 - EPA 8260C


Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec % Rec	% Rec Limits	RPD RPD	RPD Limit	Notes
Blank (B3A0430-BLK1)									Prepared: 1/4/2023 Analyzed: 1/4/2023
Dichlorodifluoromethane	ND	10							
Chloromethane	ND	2.7							
Vinyl Chloride	ND	1.6							
Bromomethane	ND	1.0							
Chloroethane	ND	5.0							
Trichlorofluoromethane	ND	25							
Acetone	ND	50							
Acrylonitrile	ND	0.50							
Trichlorotrifluoroethane	ND	25							
1,1-Dichloroethene	ND	1.0							
Methylene Chloride	ND	5.0							
Carbon Disulfide	ND	1.0							
Methyl-t-Butyl Ether (MTBE)	ND	5.0							
trans-1,2-Dichloroethene	ND	1.0							
1,1-Dichloroethane	ND	1.0							
2-Butanone (MEK)	ND	25							
2,2-Dichloropropane	ND	1.0							
cis-1,2-Dichloroethene	ND	1.0							
Bromochloromethane	ND	1.0							
Chloroform	ND	1.0							
Tetrahydrofuran	ND	4.0							
1,1,1-Trichloroethane	ND	1.0							
Carbon Tetrachloride	ND	1.0							
1,1-Dichloropropene	ND	1.0							
Benzene	ND	1.0							
1,2-Dichloroethane	ND	1.0							
Trichloroethene	ND	1.0							
1,2-Dichloropropane	ND	1.0							
Dibromomethane	ND	1.0							
Bromodichloromethane	ND	0.50							
Methyl Isobutyl Ketone	ND	25							
cis-1,3-Dichloropropene	ND	0.50							
Toluene	ND	1.0							
trans-1,3-Dichloropropene	ND	0.50							
2-Hexanone	ND	25							
1,1,2-Trichloroethane	ND	1.0							
Tetrachloroethene	ND	1.0							
1,3-Dichloropropane	ND	0.50							
Dibromochloromethane	ND	0.50							
1,2-Dibromoethane	ND	0.50							
trans-1,4-Dichloro-2-Butene	ND	10							
Chlorobenzene	ND	1.0							
1,1,1,2-Tetrachloroethane	ND	1.0							
Ethylbenzene	ND	1.0							
m+p Xylenes	ND	1.0							
o-Xylene	ND	1.0							
Styrene	ND	1.0							
Bromoform	ND	1.0							
Isopropylbenzene	ND	1.0							
1,1,2,2-Tetrachloroethane	ND	0.50							
Bromobenzene	ND	1.0							

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec % Rec	% Rec Limits	RPD RPD	RPD Limit	Notes
Blank (B3A0430-BLK1) - Continued								Prepared: 1/4/2023 Analyzed: 1/4/2023	
1,2,3-Trichloropropane	ND	1.0							
n-Propylbenzene	ND	1.0							
2-Chlorotoluene	ND	1.0							
4-Chlorotoluene	ND	1.0							
1,3,5-Trimethylbenzene	ND	1.0							
tert-Butylbenzene	ND	1.0							
1,2,4-Trimethylbenzene	ND	1.0							
sec-Butylbenzene	ND	1.0							
1,3-Dichlorobenzene	ND	1.0							
4-Isopropyltoluene	ND	1.0							
1,4-Dichlorobenzene	ND	1.0							
1,2-Dichlorobenzene	ND	1.0							
n-Butylbenzene	ND	1.0							
1,2-Dibromo-3-Chloropropane	ND	1.0							
1,2,4-Trichlorobenzene	ND	1.0							
Hexachlorobutadiene	ND	0.45							
Naphthalene	ND	1.0							
1,2,3-Trichlorobenzene	ND	1.0							
<i>Surrogate: 1,2-Dichloroethane-d4</i>					96.1	70 - 130			
<i>Surrogate: Toluene-d8</i>					102	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					98.0	70 - 130			
LCS (B3A0430-BS1)								Prepared: 1/4/2023 Analyzed: 1/4/2023	
Dichlorodifluoromethane	61.7	10	50.000		123	70 - 130			
Chloromethane	59.2	2.7	50.000		118	70 - 130			
Vinyl Chloride	55.7	1.6	50.000		111	70 - 130			
Bromomethane	58.8	1.0	50.000		118	70 - 130			
Chloroethane	56.3	5.0	50.000		113	70 - 130			
Trichlorofluoromethane	46.2	25	50.000		92.4	70 - 130			
Acetone	102	50	100.000		102	70 - 130			
Acrylonitrile	48.0	0.50	50.000		95.9	70 - 130			
Trichlorotrifluoroethane	48.8	25	50.000		97.6	70 - 130			
1,1-Dichloroethene	48.0	1.0	50.000		96.1	70 - 130			
Methylene Chloride	51.6	5.0	50.000		103	70 - 130			
Carbon Disulfide	58.1	1.0	50.000		116	70 - 130			
Methyl-t-Butyl Ether (MTBE)	47.8	5.0	50.000		95.6	70 - 130			
trans-1,2-Dichloroethene	49.3	1.0	50.000		98.6	70 - 130			
1,1-Dichloroethane	47.4	1.0	50.000		94.9	70 - 130			
2-Butanone (MEK)	99.4	25	100.000		99.4	70 - 130			
2,2-Dichloropropane	50.2	1.0	50.000		100	70 - 130			
cis-1,2-Dichloroethene	48.0	1.0	50.000		95.9	70 - 130			
Bromochloromethane	48.6	1.0	50.000		97.1	70 - 130			
Chloroform	47.6	1.0	50.000		95.2	70 - 130			
Tetrahydrofuran	50.1	4.0	50.000		100	70 - 130			
1,1,1-Trichloroethane	51.5	1.0	50.000		103	70 - 130			
Carbon Tetrachloride	52.2	1.0	50.000		104	70 - 130			
1,1-Dichloropropene	54.8	1.0	50.000		110	70 - 130			
Benzene	50.1	1.0	50.000		100	70 - 130			
1,2-Dichloroethane	49.9	1.0	50.000		99.8	70 - 130			
Trichloroethene	48.3	1.0	50.000		96.6	70 - 130			
1,2-Dichloropropane	50.7	1.0	50.000		101	70 - 130			
Dibromomethane	50.6	1.0	50.000		101	70 - 130			
Bromodichloromethane	52.1	0.50	50.000		104	70 - 130			

Analyte	Result (ug/L)	RL (ug/L)	Spike Level	Source Result	% Rec % Rec	% Rec Limits	RPD RPD	RPD Limit	Notes
LCS (B3A0430-BS1) - Continued									Prepared: 1/4/2023 Analyzed: 1/4/2023
Methyl Isobutyl Ketone	113	25	100.000		113	70 - 130			
cis-1,3-Dichloropropene	52.8	0.50	50.000		106	70 - 130			
Toluene	49.5	1.0	50.000		99.0	70 - 130			
trans-1,3-Dichloropropene	53.9	0.50	50.000		108	70 - 130			
2-Hexanone	54.6	25	100.000		54.6	70 - 130			L
1,1,2-Trichloroethane	50.4	1.0	50.000		101	70 - 130			
Tetrachloroethene	49.9	1.0	50.000		99.8	70 - 130			
1,3-Dichloropropane	50.1	0.50	50.000		100	70 - 130			
Dibromochloromethane	48.0	0.50	50.000		95.9	70 - 130			
1,2-Dibromoethane	47.4	0.50	50.000		94.8	70 - 130			
trans-1,4-Dichloro-2-Butene	48.7	10	50.000		97.3	70 - 130			
Chlorobenzene	47.8	1.0	50.000		95.5	70 - 130			
1,1,1,2-Tetrachloroethane	46.3	1.0	50.000		92.6	70 - 130			
Ethylbenzene	45.7	1.0	50.000		91.5	70 - 130			
m+p Xylenes	94.3	1.0	100.000		94.3	70 - 130			
o-Xylene	48.4	1.0	50.000		96.8	70 - 130			
Styrene	48.8	1.0	50.000		97.6	70 - 130			
Bromoform	48.4	1.0	50.000		96.9	70 - 130			
Isopropylbenzene	48.1	1.0	50.000		96.2	70 - 130			
1,1,2,2-Tetrachloroethane	46.1	0.50	50.000		92.3	70 - 130			
Bromobenzene	43.9	1.0	50.000		87.7	70 - 130			
1,2,3-Trichloropropane	45.2	1.0	50.000		90.5	70 - 130			
n-Propylbenzene	46.9	1.0	50.000		93.8	70 - 130			
2-Chlorotoluene	46.4	1.0	50.000		92.7	70 - 130			
4-Chlorotoluene	46.4	1.0	50.000		92.8	70 - 130			
1,3,5-Trimethylbenzene	45.7	1.0	50.000		91.4	70 - 130			
tert-Butylbenzene	46.7	1.0	50.000		93.3	70 - 130			
1,2,4-Trimethylbenzene	46.1	1.0	50.000		92.1	70 - 130			
sec-Butylbenzene	47.1	1.0	50.000		94.2	70 - 130			
1,3-Dichlorobenzene	45.2	1.0	50.000		90.4	70 - 130			
4-Isopropyltoluene	45.4	1.0	50.000		90.8	70 - 130			
1,4-Dichlorobenzene	44.8	1.0	50.000		89.5	70 - 130			
1,2-Dichlorobenzene	44.3	1.0	50.000		88.5	70 - 130			
n-Butylbenzene	45.1	1.0	50.000		90.1	70 - 130			
1,2-Dibromo-3-Chloropropane	45.1	1.0	50.000		90.2	70 - 130			
1,2,4-Trichlorobenzene	41.9	1.0	50.000		83.8	70 - 130			
Hexachlorobutadiene	38.9	0.45	50.000		77.8	70 - 130			
Naphthalene	44.2	1.0	50.000		88.4	70 - 130			
1,2,3-Trichlorobenzene	40.8	1.0	50.000		81.5	70 - 130			
<i>Surrogate: 1,2-Dichloroethane-d4</i>					88.7	70 - 130			
<i>Surrogate: Toluene-d8</i>					101	70 - 130			
<i>Surrogate: 4-Bromofluorobenzene</i>					104	70 - 130			

All questions related to this report should be directed to David Ditta, Timothy Fusco, or Robert Blake at 203-377-9984.

Sincerely,

David Ditta
Laboratory Director

This technical report was reviewed by Robert Blake

Project Manager

This report shall not be reproduced except in full, without the written approval of the laboratory

Report Comments:

Sample Result Flags:

- E- The result is estimated, above the calibration range.
- H- The surrogate recovery is above the control limits.
- L- The surrogate recovery is below the control limits.
- B- The compound was detected in the laboratory blank.
- P- The Relative Percent Difference (RPD) of dual column analyses exceeds 40%.
- D- The RPD between the sample and the sample duplicate is high. Sample Homogeneity may be a problem.
- +- The Surrogate was diluted out.
- *C1- The Continuing Calibration did not meet method specifications and was biased low for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased low.
- *C2- The Continuing Calibration did not meet method specifications and was biased high for this analyte. Increased uncertainty is associated with the reported value which is likely to be biased high.
- *F1- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the low side.
- *F2- The Laboratory Control Sample recovery is outside of control limits. Reported value for this analyte is likely to be biased on the high side.
- *I- Analyte exceeds method limits from second source standard in Initial Calibration Verification (ICV). No directional bias.

All results met standard operating procedures unless indicated by a data qualifier next to a sample result, or a narration in the QC report.

For Percent Solids, if any of the following prep methods (3050B, 3540C, 3545A, 3550C, 5035 and 9013A) were used for samples pertaining to this report, the percent solids procedure is within that prep method.

Complete Environmental Testing is only responsible for the certified testing and is not directly responsible for the integrity of the sample before laboratory receipt.

ND is None Detected at or above the specified reporting limit

Reporting Limit (RL) is the limit of detection for an analyte after any adjustment made for dilution or percent moisture.

All analyses were performed in house unless a Reference Laboratory is listed.

Samples will be disposed of 30 days after the report date.

80 Luples Drive
Stratford, CT 06615

Tel: (203) 377-9984
Fax: (203) 377-9952
email: cet1@cetlabs.com

Quality Control Definitions and Abbreviations

Internal Standard (IS)	An Analyte added to each sample or sample extract. An internal standard is used to monitor retention time, calculate relative response, and quantify analytes of interest.
Surrogate Recovery	The % recovery for non-target organic compounds that are spiked into all samples. Used to determine method performance.
Continuing Calibration Batch	An analytical standard analyzed with each set of samples to verify initial calibration of the system. Samples that are analyzed together with the same method, sequence and lot of reagents within the same time period.
ND	Not detected at or above the specified reporting limit.
RL	Reporting Limit
Dilution	Multiplier added to detection levels (MDL) and/or sample results due to interferences and/or high concentration of target compounds.
Duplicate Result	Result from the duplicate analysis of a sample.
Spike Level	Amount of analyte found in a sample.
Matrix Spike Result	Amount of analyte added to a sample
Matrix Spike Dup	Amount of analyte found including amount that was spiked.
Matrix Spike % Recovery	Amount of analyte found in duplicate spikes including amount that was spike.
Matrix Spike Dup % Recovery	% Recovery of spiked amount in sample.
RPD	% Recovery of spiked duplicate amount in sample.
Blank	Relative percent difference between Matrix Spike and Matrix Spike Duplicate.
LCS % Recovery	Method Blank that has been taken through all steps of the analysis.
Recovery Limits	Laboratory Control Sample percent recovery. The amount of analyte recovered from a fortified sample.
CC	A range within which specified measurements results must fall to be compliant.
	Calibration Verification

Flags:

- H- Recovery is above the control limits
- L- Recovery is below the control limits
- B- Compound detected in the Blank
- P- RPD of dual column results exceeds 40%
- #- Sample result too high for accurate spike recovery.

Connecticut Laboratory Certification PH0116
Massachusetts Laboratory Certification M-CT903
Pennsylvania NELAP Accreditation 68-02927

New York NELAP Accreditation 11982
Rhode Island Certification 199

REASONABLE CONFIDENCE PROTOCOL LABORATORY ANALYSIS QA/QC CERTIFICATION FORM

Laboratory Name: Complete Environmental Testing, Inc.

Client: GeoQuest

Project Location: 4130

Project Number:

Laboratory Sample ID(s):

2120793-01 thru 2120793-04

Sample Date(s):

12/27/2022

List RCP Methods Used:

CET #: 2120793

CT-ETPH, EPA 8260C

1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1A	Were the method specified preservation and holding time requirements met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
1B	VPH and EPH Methods only: Was the VPH and EPH method conducted without significant modifications (see Section 11.3 of respective RCP methods)?	<input type="checkbox"/> Yes <input type="checkbox"/> No <input checked="" type="checkbox"/> N/A
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
3	Were samples received at an appropriate temperature (< 6 degrees C.)?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No <input type="checkbox"/> N/A
4	Were all QA/QC performance criteria specified in the CT DEP Reasonable Confidence Protocol documents achieved?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No
5a	a) Were reporting limits specified or referenced on the chain-of-custody?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
5b	b) Were these reporting limits met?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	<input checked="" type="checkbox"/> Yes <input type="checkbox"/> No
7	Are project specific matrix spikes and laboratory duplicates included with this data set?	<input type="checkbox"/> Yes <input checked="" type="checkbox"/> No

Notes: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A, or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence."

This form may not be altered and all questions must be answered.

I, the undersigned, attest under the pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized Signature:

Position: Laboratory Director

Printed Name: David Ditta

Date: 01/05/2023

Name of Laboratory: Complete Environmental Testing, Inc.

This certification form is to be used for RCP methods only.

RCP Case Narrative

4- See Exceptions Report Below

7- Project specific QC was not requested by the client.

4- Exceptions Report

Analyte	QC Type	Exception	Result	RPD	Recovery (%)	Batch/Sequence
2-Hexanone	LCS	Low	54.6		54.6	B3A0430
2-Butanone (MEK)	CC	High	129		129	S3A0502
2-Hexanone	CC	Low	59.1		59.1	S3A0502
Acetone	CC	High	124		124	S3A0502
Dichlorodifluoromethane	CC	High	63.0		126	S3A0502
Methyl Isobutyl Ketone	CC	High	127		127	S3A0502
Tetrahydrofuran	CC	High	72.0		144	S3A0502
trans-1,4-Dichloro-2-Butene	CC	High	64.4		129	S3A0502
2-Hexanone	ICV	Analyte exceeds method limit of second source standard. Non-directional bias				

QC Batch/Sequence Report

Batch	Sequence	CET ID	Sample ID	Specific Method	Matrix	Collection Date
B2L2901		2120793-01	MW-1	CT-ETPH	Water	12/27/2022
B2L2901		2120793-02	MW-2	CT-ETPH	Water	12/27/2022
B2L2901		2120793-03	MW-3	CT-ETPH	Water	12/27/2022
B2L2901		2120793-04	MW-4	CT-ETPH	Water	12/27/2022
B3A0430	S3A0502	2120793-01	MW-1	EPA 8260C	Water	12/27/2022
B3A0430	S3A0502	2120793-02	MW-2	EPA 8260C	Water	12/27/2022
B3A0430	S3A0502	2120793-03	MW-3	EPA 8260C	Water	12/27/2022
B3A0430	S3A0502	2120793-04	MW-4	EPA 8260C	Water	12/27/2022

CERTIFICATIONS

Certified Analyses included in this Report

Analyte	Certifications
<i>CT-ETPH in Water</i>	
ETPH	CT,RI
<i>EPA 8260C in Water</i>	
Dichlorodifluoromethane	CT
Chloromethane	CT
Vinyl Chloride	CT,NY
Bromomethane	CT,NY
Chloroethane	CT,NY
Trichlorofluoromethane	CT,NY
Acetone	CT,NY
Acrylonitrile	CT
Trichlorotrifluoroethane	CT,NY
1,1-Dichloroethene	CT,NY
Methylene Chloride	CT,NY
Carbon Disulfide	CT
Methyl-t-Butyl Ether (MTBE)	CT,NY
trans-1,2-Dichloroethene	CT,NY
1,1-Dichloroethane	CT,NY
2-Butanone (MEK)	CT,NY
2,2-Dichloropropane	CT,NY
cis-1,2-Dichloroethene	CT,NY
Bromoform	CT,NY
Chloroform	CT,NY
Tetrahydrofuran	CT
1,1,1-Trichloroethane	CT,NY
Carbon Tetrachloride	CT,NY
1,1-Dichloropropene	CT,NY
Benzene	CT,NY
1,2-Dichloroethane	CT,NY
Trichloroethene	CT,NY
1,2-Dichloropropane	CT,NY
Dibromomethane	CT,NY
Bromodichloromethane	CT,NY
Methyl Isobutyl Ketone	CT,NY
cis-1,3-Dichloropropene	CT,NY
Toluene	CT,NY
trans-1,3-Dichloropropene	CT,NY
2-Hexanone	CT,NY
1,1,2-Trichloroethane	CT,NY
Tetrachloroethene	CT,NY
1,3-Dichloropropane	CT,NY
Dibromochloromethane	CT,NY
1,2-Dibromoethane	CT,NY
trans-1,4-Dichloro-2-Butene	CT,NY
Chlorobenzene	CT,NY
1,1,1,2-Tetrachloroethane	CT,NY
Ethylbenzene	CT,NY

CERTIFICATIONS**Certified Analyses included in this Report**

Analyte	Certifications
EPA 8260C in Water	
m+p Xylenes	CT,NY
o-Xylene	CT,NY
Styrene	CT,NY
Bromoform	CT,NY
Isopropylbenzene	CT,NY
1,1,2,2-Tetrachloroethane	CT,NY
Bromobenzene	CT,NY
1,2,3-Trichloropropane	CT,NY
n-Propylbenzene	CT,NY
2-Chlorotoluene	CT,NY
4-Chlorotoluene	CT,NY
1,3,5-Trimethylbenzene	CT,NY
tert-Butylbenzene	CT,NY
1,2,4-Trimethylbenzene	CT,NY
sec-Butylbenzene	CT,NY
1,3-Dichlorobenzene	CT,NY
4-Isopropyltoluene	CT,NY
1,4-Dichlorobenzene	CT,NY
1,2-Dichlorobenzene	CT,NY
n-Butylbenzene	CT,NY
1,2-Dibromo-3-Chloropropane	CT,NY
1,2,4-Trichlorobenzene	CT,NY
Hexachlorobutadiene	CT,NY
Naphthalene	CT,NY
1,2,3-Trichlorobenzene	CT,NY

Complete Environmental Testing operates under the following certifications and accreditations:

Code	Description	Number	Expires
CT	Connecticut Public Health	PH0116	09/30/2024
NY	New York Certification (NELAC)	11982	04/01/2023
RI	Rhode Island Certification	LAO 00227	12/30/2023

